X-ENS-ESPCI 2021 – Un corrigé de l'épreuve de Mathématiques

Frédéric Denizet – professeur en M.P. au lycée Fénelon

Partie I

- I.1. Pour tout $P \in \mathbb{C}[X]$, la fonction $z \mapsto |P(z)|$ est continue de K fermé borné de \mathbb{C} vers \mathbb{R} elle est donc bornée et atteint ses bornes sur K, ce qui assure que $\|P\|_K \in \mathbb{R}$.
- I.2. $\|.\|_K$ est la norme de la convergence uniforme sur l'espace des fonctions bornées sur K à valeurs dans $\mathbb C$ dont $\mathbb C[X]$ peut être considéré comme un sous-espace en identifiant les polynômes et leurs fonctions polynomiales associées sur K (on remarquera que cette identification est valide car K est infini et que les fonctions polynomiales sont bornées sur K car K est fermé borné).
- $\text{I.3. Soit } z \in K, \ |Q(z)R(z)| \leq |Q(z)| \ |R(z)| \leq \|Q\|_K \ \|R\|_K \ \operatorname{donc} \ \|QR\|_K \leq \|Q\|_K \ \|R\|_K.$
- I.4. Ainsi qu'on la vu au I.1. pour tout $P \in \mathbb{C}[X]$, la fonction $z \mapsto |P(z)|$ atteint ses bornes sur K donc il existe $z \in K$ tel que $||P||_K = |P(z)|$.

Supposons donc que pour Q et R non nuls on ait $||QR||_K = ||Q||_K ||R||_K$ et posons $z_0 \in K$ tel que $||QR||_K = |(QR)(z_0)|$.

On a $||QR||_K = |Q(z_0)R(z_0)| \le ||Q||_K ||R||_K = ||QR||_K$ donc $|Q(z_0)R(z_0)| = ||Q||_K ||R||_K$. Puis $||Q||_K ||R||_K = |Q(z_0)R(z_0)| \le |Q(z_0)| ||R||_K$ avec $||R||_K > 0$ donc $|Q(z_0)| \ge ||Q||_K$ et ainsi $|Q(z_0)| = ||Q||_K$.

Enfin l'égalité $|Q(z_0)R(z_0)|=\|Q\|_K\,\|R\|_K$ avec $|Q(z_0)|=\|Q\|_K\neq 0$ assure $|R(z_0)|=\|R\|_K$.

I.5. On utilise les notations introduites par l'énoncé et on pose A tel que, pour tout $z \in K$, $|z| \le A$ (A existe car K est borné).

Soient $\rho < 0$ et $z \in K$, $Q_{\rho}(z)R_{\rho}(z) = z^2 - (a+b)z + (ab + (a-b)^2\rho - (a-b)^2\rho^2)$.

Donc $|Q_{\rho}(z)R_{\rho}(z)| \le A^2 + |a+b|A + |ab| + |a-b|^2 (\rho^2 - \rho);$

et ainsi $\|Q_{\rho}R_{\rho}\|_{K} \leq B + |a-b|^{2} (\rho^{2} - \rho)$ où on a posé $B = A^{2} + |a+b|A + |ab|$.

De plus $||Q_{\rho}||_{K} \ge |Q_{\rho}(b)| = |a - b| (1 - \rho)$ et $||R_{\rho}||_{K} \ge |R_{\rho}(a)| = |a - b| (1 - \rho)$;

donc $||Q_{\rho}||_{K} ||R_{\rho}||_{K} \ge |a-b|^{2} (1-\rho)^{2}$

et ainsi $\|Q_{\rho}\|_{K} \|R_{\rho}\|_{K} - \|Q_{\rho}R_{\rho}\|_{K} \ge |a-b|^{2} (1-\rho) - B \underset{\rho \to -\infty}{\to} +\infty$ ce qui assure qu'il existe

bien ρ tel que $\|Q_{\rho}\|_{K} \|R_{\rho}\|_{K} > \|Q_{\rho}R_{\rho}\|_{K}$ donc 1 ne majore pas le quotient $\frac{\|Q_{\rho}\|_{K} \|R_{\rho}\|_{K}}{\|Q_{\rho}R_{\rho}\|_{K}}$ où les polynômes Q_{ρ} et R_{ρ} sont de degrés 1 donc dans $\mathbb{C}_{n}[X]$ et $\mathbb{C}_{m}[X]$ ce qui assure que $C_{n,m}^{K} > 1$.

- I.6. L'application f est continue car le produit de polynômes est continu (bilinéaire en dimension finie) et la norme est continue. De plus E est trivialement borné et est un fermé de V car c'est l'image réciproque du fermé (1,1) de \mathbb{R}^2 par l'application continue $(Q,R)\mapsto (\|Q\|_K,\|R\|_K)$. Donc f est bornée et atteint ses bornes sur E ce qui assure l'existence du couple (Q_0,R_0) voulu.
- I.7. Notons q et r les coefficients dominants de Q_0 et R_0 et posons $Q_1 = \frac{Q_0}{q}$ et $R_1 = \frac{R_0}{r}$.

Les polynômes Q_1 et R_1 sont unitaires, de plus $\frac{\|Q_1\|_K \|R_1\|_K}{\|Q_1R_1\|_K} = \frac{1}{\|Q_0R_0\|_K}$.

Par définition
$$\frac{\|Q_1\|_K \|R_1\|_K}{\|Q_1R_1\|_K} \le C_{n,m}^K$$
.

Par ailleurs pour tous Q et R non nuls dans $\mathbb{C}_n[X]$ et $\mathbb{C}_m[X]$ en posant $\tilde{Q} = \frac{Q}{\|Q\|_{L^2}}$ et

$$\stackrel{\sim}{R} = \frac{R}{\|R\|_K}$$
 on a :

$$\|Q_0 R_0\|_K \le \left\|\widetilde{Q} \widetilde{R}\right\|_K \text{ i.e. } \frac{1}{\|Q_0 R_0\|_K} \ge \frac{1}{\left\|\widetilde{Q} \widetilde{R}\right\|_K} \text{ i.e. } \frac{\|Q_1\|_K \|R_1\|_K}{\|Q_1 R_1\|_K} \ge \frac{\|Q\|_K \|R\|_K}{\|QR\|_K}.$$

Cette inégalité étant vraie pour tous Q et R non nuls dans $\mathbb{C}_n[X]$ et $\mathbb{C}_m[X]$, on en déduit que $\frac{\|Q_1\|_K \|R_1\|_K}{\|Q_1R_1\|_K} \ge C_{n,m}^K$ et donc $\frac{\|Q_1\|_K \|R_1\|_K}{\|Q_1R_1\|_K} = C_{n,m}^K$

Partie II

2.8. Q est scindé donc s'écrit $Q = \alpha \prod_{k=1}^{d} (X - a_k)$ où α est son coefficient dominant et a_1, \ldots, a_d sont ses racines.

On note $\mathcal{A} = \{ \theta \in [0, 2\pi] \mid Q(e^{i\theta}) = 0 \}$ (cet ensemble est fini).

On pose
$$\mathcal{B} = [0, 2\pi] \setminus \mathcal{A}$$
, on a pour tout $\theta \in \mathcal{B}$, $\ln |Q(e^{i\theta})| = \ln |\alpha| + \sum_{k=1}^{n} \ln |e^{i\theta} - a_k|$.

Soit $k \in [1, n]$, si $|a_k| \neq 1$, $\theta \mapsto \ln |e^{i\theta} - a_k|$ est continue et donc intégrable (au sens usuel) sur $[0, 2\pi]$.

Si $|a_k|=1$ on pose $\theta_k\in[0,2\pi]$ tel que $\mathrm{e}^{i\theta_k}=a_k$ (θ_k est unique sauf si $a_k=1$ auquel cas on travaille à la fois pour 0 à droite et 2π à gauche), $\theta\mapsto\ln\left|\mathrm{e}^{i\theta}-a_k\right|$ est continue sur $[0,\theta_k[\cup]\theta_k,2\pi]$ il faut s'assurer de son intégrabilité au voisinage de θ_k à droite et à gauche. Or pour $\theta\in[0,\theta_k[\cup]\theta_k,2\pi]$:

$$\ln\left|e^{i\theta} - a_k\right| = \ln\left|e^{i\theta} - e^{i\theta_k}\right| = \ln\left|e^{i(\theta - \theta_k)} - 1\right| = \ln\left|\theta - \theta_k + \mathop{o}_{\theta \to \theta_k}(\theta - \theta_k)\right| = \mathop{o}_{\theta \to \theta_k}(|\theta - \theta_k|^{-\frac{1}{2}}).$$

Ce qui assure l'intégrabilité de $\theta \mapsto \ln |e^{i\theta} - a_k| \sin [0, 2\pi]$ au sens de la définition 1.

En conclusion $\theta \mapsto \ln |Q(e^{i\theta})|$ est intégrable sur $[0, 2\pi]$ au sens de la définition 1.

- 2.9. Pour p > 0, $M_p(Q)$ est l'intégrale d'une fonction continue positive et non nulle sur $[0, 2\pi]$ (car Q admet un nombre fini de racines donc $Q(e^{i\theta})$ ne peut s'annuler qu'un nombre fini de fois sur $[0, 2\pi]$). Ceci assure que $M_p(Q) > 0$.
- 2.10. Puisque ln est continue sur \mathbb{R}_+^* , pour vérifier que φ est continue sur \mathbb{R}_+^* il suffit de vérifier que $p \mapsto M_p(Q)$ l'est, ce que l'on fait en appliquant le théorème de continuité des intégrales à paramètre dont on vérifie les hypothèses :
 - i. Pour tout $p \in \mathbb{R}_+^*$, $\theta \mapsto \left| Q(e^{i\theta}) \right|^p$ est continue (par morceaux) sur $[0, 2\pi]$.
 - ii. Pour tout $\theta \in [0, 2\pi], p \mapsto \left| Q(e^{i\theta}) \right|^p$ est continue sur \mathbb{R}_+^* .
 - iii. |Q| est continue sur $\mathbb D$ qui est un fermé borné donc est bornée sur $\mathbb D$ ce qui assure l'existence de T>1 tel que pour tout $\theta\in[0,2\pi],\, \left|Q(\mathrm{e}^{i\theta})\right|\leq T.$

Soit alors b > 0, pour tout $\theta \in [0, 2\pi]$ et pour tout $p \in]0, b]$, on a $|Q(e^{i\theta})|^p \le T^b$ où $\theta \mapsto T^b$ est intégrable sur $[0, 2\pi]$.

On en conclut que, pour tout b > 0, $p \mapsto M_p(Q)$ est continue sur]0,b] ce qui assure que $p \mapsto M_p(Q)$ est continue sur $]0,+\infty[$ et donc que φ est continue sur $]0,+\infty[$

Il reste à vérifier la continuité de φ en 0, i.e. à justifier que $\lim_{p\to 0} (M_p(Q)) = 1$, ce que l'on fait grâce au théorème de convergence dominée dont on vérifie les hypothèses, on reprend pour cela le T défini ci-dessus et on pose $\mathcal{A} = \{\theta \in [0, 2\pi] \mid Q(e^{i\theta}) = 0\}$ (qui est fini).

- i. Pour tout $p \in]0,1]$, $\theta \mapsto |Q(e^{i\theta})|^p$ est continue (par morceaux) sur $[0,2\pi]$.
- i. Pour tout $\theta \in [0, 2\pi]$, $\lim_{p \to 0} (|Q(e^{i\theta})|^p) = \begin{cases} 1 & \text{si } \theta \notin \mathcal{A} \\ 0 & \text{si } \theta \in \mathcal{A} \end{cases}$.
- iii. La fonction $f: t \mapsto \begin{cases} 1 & \text{si } \theta \notin \mathcal{A} \\ 0 & \text{si } \theta \in \mathcal{A} \end{cases}$ est continue par morceaux sur $[0, 2\pi]$.
- iv. Pour tout $\theta \in [0, 2\pi]$ et pour tout $p \in]0, 1]$, on a $\left|Q(e^{i\theta})\right|^p \leq T$ où $\theta \mapsto T$ est intégrable sur $[0, 2\pi]$.

En conclusion $\lim_{p\to 0} (M_p(Q)) = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt = 1$, ce qui assure la continuité de φ en 0.

2.11. Là encore, puisque ln est dérivable sur \mathbb{R}_+^* , pour vérifier que φ est dérivable sur \mathbb{R}_+^* il suffit de vérifier que $p \mapsto M_p(Q)$ l'est, ce que l'on fait en appliquant le théorème de dérivabilité des intégrales à paramètre dont on vérifie les hypothèses en posant $f:(p,t) \in \mathbb{R}_+^* \times [0,2\pi] \mapsto |Q(e^{it})|^p$.

On note toujours $\mathcal{A} = \{t \in [0, 2\pi] \mid Q(e^{it}) = 0\}, \mathcal{B} = [0, 2\pi] \setminus \mathcal{A}, \text{ et } T > 1 \text{ tel que pour tout } t \in [0, 2\pi], |Q(e^{it})| \leq T.$

- i. Pour tout $p \in \mathbb{R}_+^*$, $t \mapsto f(p,t)$ est continue et donc intégrable sur $[0,2\pi]$ (segment).
- ii. Pour tout $t \in [0,2\pi], \, p \mapsto f(p,t)$ est de classe \mathcal{C}^1 sur \mathbb{R}_+^* et
 - si $t \in \mathcal{A}$, $\forall p \in \mathbb{R}_+^*$, $\partial_1 f(p,t) = 0$;
 - si $t \in \mathcal{B}$, $\forall p \in \mathbb{R}_{+}^{*}$, $\partial_{1} f(p, t) = \ln \left| Q(e^{it}) \right| \left| Q(e^{it}) \right|^{p}$;
- iii. Pour tout $p \in \mathbb{R}_+^*$, $t \mapsto \partial_1 f(p,t)$ est continue par morceaux sur $[0,2\pi]$ (elle est même continue car $\lim_{u \to 0^+} (u^p \ln(u)) = 0$).
- iv. Soit un segment [a,b] inclus dans \mathbb{R}_+^* , pour tout $p \in [a,b]$ et pour tout $u \in]0,T]$ on a $|u^p \ln(u)| \leq \left| (u^a + u^b) \ln(u) \right|$ or la fonction $u \mapsto (u^a + u^b) \ln(u)$ est continue sur]0,T] et prolongeable par continuité en 0 donc elle est bornée sur]0,T], on peut ainsi poser U tel que, pour tout $u \in]0,T]$, $\left| (u^a + u^b) \ln(u) \right| \leq U$.

Alors, pour tout $p \in [a, b]$ et pour tout $t \in \mathcal{B}$, $|\partial_1 f(p, t)| = |\ln |Q(e^{it})| |Q(e^{it})|^p|$ où $|Q(e^{it})|^p \in]0, T]$ donc $|\partial_1 f(p, t)| \leq U$.

On a finalement : $\forall (p,t) \in [a,b] \times [0,2\pi], |\partial_1 f(p,t)| \leq U$ où $t \mapsto U$ est intégrable sur $[0,2\pi]$.

On en conclut que, pour tout segment [a,b] inclus dans \mathbb{R}_+^* , $p \mapsto M_p(Q)$ est dérivable sur [a,b] ce qui assure que $p \mapsto M_p(Q)$ est dérivable sur $]0,+\infty[$ et donc que φ est dérivable sur $]0,+\infty[$.

De plus, pour tout $p \in \mathbb{R}_+^*$: $\varphi'(p) = \frac{1}{2\pi M_p(Q)} \int_0^{2\pi} \ln |Q(e^{it})| |Q(e^{it})|^p dt$.

2.12. Pour déterminer la limite de φ' en 0^+ on applique le théorème 1 (de convergence dominée) à $p \mapsto \int_0^{2\pi} \ln |Q(e^{it})| |Q(e^{it})|^p dt$ dont on vérifie les hypothèses avec les mêmes notations

qu'à 2.11., en considérant une suite $(p_n)_{n\in\mathbb{N}}\in]0,1]^{\mathbb{N}}$ qui tend vers 0 et en posant, pour tout $n\in\mathbb{N},\ f_n:t\mapsto\partial_1 f(p_n,t)$ i.e. $f_n:t\mapsto\begin{cases} \ln\left|Q(\mathrm{e}^{it})\right|\left|Q(\mathrm{e}^{it})\right|^{p_n} & \text{si }t\in\mathcal{A}\\ 0 & \text{si }t\in\mathcal{B} \end{cases}$.

i. Pour tout $n \in \mathbb{N}$, f_n est continue sur $[0, 2\pi]$ (cf ci-dessus).

ii. Soit
$$t \in I$$
, $\lim_{n \to +\infty} (f_n(t)) = \begin{cases} \ln |Q(e^{it})| & \text{si } t \in \mathcal{A} \\ 0 & \text{si } t \in \mathcal{B} \end{cases}$

- iii. La fonction $\psi: t \mapsto \begin{cases} \ln \left| Q(\mathrm{e}^{it}) \right| & \text{si } t \in \mathcal{A} \\ 0 & \text{si } t \in \mathcal{B} \end{cases}$ est intégrable sur $[0, 2\pi]$ au sens de la définition 1 (cf 2.8.).
- iv Pour tout $n \in \mathbb{N}$ et pour tout $t \in [0, 2\pi]$, $|f_n(t)| \leq T\psi(t)$ où $T\psi$ est intégrable sur $[0, 2\pi]$ au sens de la définition 1.

En conclusion et par caractérisation séquentielle de la limite on a :

$$\lim_{p\to 0} \left(\int_0^{2\pi} \ln \left| Q(\mathbf{e}^{it}) \right| \left| Q(\mathbf{e}^{it}) \right|^p dt \right) = \int_0^{2\pi} \ln \left| Q(\mathbf{e}^{it}) \right| dt = 2\pi \ln(M(Q));$$
comme
$$\lim_{p\to 0} \left(M_p(Q) \right) = 1 \text{ on a donc } \lim_{p\to 0} \left(\varphi'(t) \right) = \ln(M(Q)).$$

Ceci assure que φ est dérivable en 0 et que $\varphi'(0) = \ln(M(Q))$ et donc que pour p au voisinage de $0: \varphi(p) = \varphi(0) + \varphi'(0)p + \mathop{\circ}_{p\to 0}(p) = \ln(M(Q))p + \mathop{\circ}_{p\to 0}(p)$.

Enfin pour
$$p \in \mathbb{R}_+^*$$
, on a $M_p(Q)^{\frac{1}{p}} = \exp\left(\frac{1}{p}\varphi(p)\right) = \exp\left(\ln(M(Q)) + \underset{p\to 0}{o}(1)\right)$ d'où $\lim_{p\to 0}\left(M_p(Q)^{\frac{1}{p}}\right) = \exp\left(\ln(M(Q))\right) = M(Q)$

2.13. On utilise les notations données par l'énoncé.

On a pour tout
$$\rho \in [0, 1[, F(\rho) = \frac{1}{2} \ln |1 - \rho e^{i\theta}|^2 = \frac{1}{2} \ln (1 - 2\rho \cos(\theta) + \rho^2).$$

Donc pour tout
$$\rho \in [0, 1[, F'(\rho) = \frac{\rho - \cos(\theta)}{(1 - \rho e^{i\theta})(1 - \rho e^{-i\theta})} = -\frac{1}{2} \left(\frac{e^{i\theta}}{(1 - \rho e^{i\theta})} + \frac{e^{-i\theta}}{(1 - \rho e^{-i\theta})} \right);$$

i.e.
$$F'(\rho) = -\operatorname{Re}\left(\frac{e^{i\theta}}{(1-\rho e^{i\theta})}\right) = -\operatorname{Re}\left(e^{i\theta}\sum_{k=0}^{\infty}\rho^k e^{ik\theta}\right) = -\operatorname{Re}\left(\sum_{k=0}^{\infty}\rho^k e^{i(k+1)\theta}\right).$$

Par intégration terme-à-terme d'une série entière sur son intervalle ouvert de convergence,

pour tout
$$\rho \in [0, 1[, F(\rho) = -\operatorname{Re}\left(\sum_{k=0}^{+\infty} \frac{1}{k+1} \rho^{k+1} e^{i(k+1)\theta}\right) = -\operatorname{Re}\left(\sum_{n=1}^{+\infty} \frac{1}{n} \rho^n e^{in\theta}\right).$$

Notamment pour $\rho = r$ on a $\ln |1 - z| = F(r) = -\text{Re}\left(\sum_{n=1}^{+\infty} \frac{z^n}{n}\right)$.

$$2.14. \ M(X-z) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|e^{it} - z\right| dt\right) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|1 - ze^{-it}\right| dt\right).$$

$$\operatorname{Donc} M(X-z) = \exp\left(-\frac{1}{2\pi} \operatorname{Re}\left(\int_0^{2\pi} \sum_{n=0}^{+\infty} \frac{z^n e^{-int}}{n} dt\right)\right).$$

La série de fonction $\sum u_n$ où pour tout $n \in \mathbb{N}^*$, $u_n : t \mapsto \frac{z^n e^{-int}}{n}$ est une série de fonctions continues sur $[0, 2\pi]$ qui converge normalement sur $[0, 2\pi]$ (car pour tout $t \in [0, 2\pi]$, $|u_n(t)| \le |z|^n$ avec |z| < 1), on peut donc intervertir série et intégrale.

D'où
$$M(X-z) = \exp\left(-\frac{1}{2\pi} \operatorname{Re}\left(\sum_{n=1}^{+\infty} \int_{0}^{2\pi} \frac{z^{n} e^{-int}}{n} dt\right)\right).$$

Or pour tout $n \in \mathbb{N}^*$, $\int_0^{2\pi} e^{int} dt = 0$ donc $M(X - z) = \exp(0) = 1$.

$$\begin{split} &M(X-z^{-1}) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left| \mathrm{e}^{it} - z^{-1} \right| \, \mathrm{d}t \right) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \left(\ln\left| z^{-1} \right| + \ln\left| 1 - z \mathrm{e}^{it} \right| \right) \mathrm{d}t \right) \\ &= \exp\left(\ln\left| z^{-1} \right| + \frac{1}{2\pi} \int_0^{2\pi} \ln\left| 1 - z \mathrm{e}^{it} \right| \, \mathrm{d}t \right). \end{split}$$

Or tout comme au dessus $\int_0^{2\pi} \ln |1 - ze^{it}| dt = 0.$

On a donc $M(X - z^{-1}) = \exp(\ln|z^{-1}|) = |z^{-1}|$.

2.15. On utilise les notations de l'énoncé avec de plus $\psi \in [0, 2\pi[$ tel que $z = e^{i\psi}$, la question 2.14. assure que g est constante égale à 1 et on veut montrer que g tend vers M(X-z) en 1.

Pour cela on applique le théorème de convergence dominée avec $D = [0, 2\pi] \setminus \{\psi\}$.

Montrons dans un premier temps l'inégalité que « remarque » l'énoncé, on pose $r \in [0,1[$ et $t \in [0,2\pi]$ on a : $|e^{it} - re^{i\psi}| = |e^{i(t-\psi)} - r| \ge |\operatorname{Im}(e^{i(t-\psi)} - r)| = |\sin(t-\psi)|$.

On a pour
$$r \in [0, 1[, g(r) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|e^{it} - re^{i\psi}\right| dt\right)$$
.

Pour tout $t \in D$, $\lim_{r \to 1} \left(\ln \left| e^{it} - re^{i\psi} \right| \right) = \ln \left| e^{it} - e^{i\psi} \right|$

De plus pour tous $r \in [0,1[$ et $t \in D, |\sin(t-\psi)| \le |e^{it} - re^{i\psi}| \le 2$

donc $\left|\ln\left|\mathrm{e}^{it}-re^{i\psi}\right|\right| \leq \ln(2) - \ln\left|\sin(t-\psi)\right|$ où $t\mapsto \ln(2) - \ln\left|\sin(t-\psi)\right|$ est intégrable sur $[0,2\pi]$ au sens de la définition 1 (intégrale impropre convergente en ψ).

On en déduit que
$$\lim_{r\to 1} (g(r)) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|e^{it} - e^{i\psi}\right| dt\right) = M(X-z)$$
, ce qui assure $M(X-z) = 1$.

2.16. Les questions précédentes assurent que pour tout $z \in \mathbb{C}$, $M(X-z) = \max\{1, |z|\}$.

Or
$$M(Q) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|\lambda \prod_{k=1}^n (e^{it} - a_k)\right| dt\right) = |\lambda| \prod_{k=1}^n \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \ln\left|e^{it} - a_k\right| dt\right).$$

Donc
$$M(Q) = |\lambda| \prod_{k=1}^{n} M(X - a_k) = |\lambda| \prod_{k=1}^{n} \max\{1, |a_k|\}$$

Partie III

3.17. Par linéarité il suffit de montrer ce résultat pour un monôme, on suppose donc $P = X^d$.

On remarque que, pour tout $n \in \mathbb{N}^*$, $\int_0^{2\pi} e^{int} dt = \begin{cases} 2\pi & \text{si } n = 0 \\ 0 & \text{si } n \ge 1 \end{cases}$.

On a donc
$$\int_0^{2\pi} (z + re^{it})^d dt = \sum_{k=0}^d \binom{d}{k} z^{d-k} r^k \int_0^{2\pi} e^{ikt} dt = z^d = P(z).$$

3.18. On a déjà justifié qu'il existait $z \in \mathbb{D}$ tel que $||P||_{\mathbb{D}} = |P(z)|$, pour un tel z on note $z = \rho e^{i\psi}$ avec $\rho \in [0, 1]$.

On pose $r = 1 - \rho$ alors pour tout $t \in [0, 2\pi]$, on a $z + re^{it} \in \mathbb{D}$ donc $|P(z + re^{it})| \le |P(z)|$

$$|P(z)| = \left| \int_0^{2\pi} P(z + re^{it}) dt \right| \le \int_0^{2\pi} \left| P(z + re^{it}) \right| dt \le \int_0^{2\pi} |P(z)| dt = |P(z)|.$$

On a donc $\int_{0}^{2\pi} (|P(z+re^{it})| - |P(z)|) dt = 0$ où la fonction intégrée est continue et de

signe constant ce qui assure que, pour tout $t \in [0, 2\pi], |P(z + re^{it})| - |P(z)| = 0.$

Notamment $P(z + re^{i\psi}) = P(z)$ où $z + re^{i\psi} = e^{i\psi} \in \partial \mathbb{D}$.

Il existe donc un élément de $\partial \mathbb{D}$ où est atteinte $\|P\|_{\mathbb{D}}$ ce qui assure que $\|P\|_{\partial \mathbb{D}} = \|P\|_{\mathbb{D}}$.

3.19. On utilise les notations de l'énoncé, on remarque que, pour tout $z \in \partial \mathbb{D}$, $P(z) = Q(z^{-1})$ ce qui assure que $||P||_{\partial \mathbb{D}} = ||Q||_{\partial \mathbb{D}}$.

Soit $z \in \mathbb{C}$.

Si
$$|z| \le 1$$
 on a $|P(z)| \le ||P||_{\partial \mathbb{D}} \le ||P||_{\partial \mathbb{D}} \max \{1, |z|^d\}.$

Si
$$|z| > 1$$
, on a $|P(z)| = |z|^d |Q(z^{-1})| \le ||Q||_{\partial \mathbb{D}} \max \{1, |z|^d\} = ||P||_{\partial \mathbb{D}} \max \{1, |z|^d\}$.

On a donc toujours $|P(z)| \le ||P||_{\partial \mathbb{D}} \max \{1, |z|^d\}$.

3.20. Sans perte de généralité on peut supposer que les racines de Q sont $\alpha_1, \ldots, \alpha_n$ et que les racines de R sont $\alpha_{n+1}, \ldots, \alpha_{n+m}$.

On note de plus λ_Q et λ_R les coefficients dominants de Q et R, on a $\lambda_Q \lambda_R = \lambda$

Il existe $(u, v) \in \partial \mathbb{D}^2$ tel que $|Q(u)| = ||Q||_{\mathbb{D}}$ et $|R(v)| = ||R||_{\mathbb{D}}$.

Alors
$$||Q||_{\mathbb{D}} = |\lambda_Q| \prod_{i=1}^n |u - \alpha_i| \le |\lambda_Q| \prod_{i=1}^n \max\{|u - \alpha_i|, |v - \alpha_i|\}$$

Alors
$$\|Q\|_{\mathbb{D}} = |\lambda_Q| \prod_{i=1}^n |u - \alpha_i| \le |\lambda_Q| \prod_{i=1}^n \max \{|u - \alpha_i|, |v - \alpha_i|\}.$$
De même $\|R\|_{\mathbb{D}} = |\lambda_R| \prod_{\substack{i=n+1\\n+m}}^{n+m} |v - \alpha_i| \le |\lambda_R| \prod_{\substack{i=n+1\\n+m}}^{n+m} \max \{|u - \alpha_i|, |v - \alpha_i|\}.$

Donc
$$||Q||_{\mathbb{D}} ||R||_{\mathbb{D}} \le |\lambda| \prod_{i=1}^{n+m} \max\{|u - \alpha_i|, |v - \alpha_i|\}.$$

3.21. Déterminons les racines de S.

On a
$$S = \lambda \prod_{i=1}^{m+n} (uX - v - \alpha_i(X - 1)) = \lambda \prod_{i=1}^{m+n} ((u - \alpha_i)X - (v - \alpha_i)).$$

Notons $A = \{i \in [1, m+n] \mid \alpha_i = u\}$ et $B = \{i \in [1, m+n] \mid \alpha_i \neq u\}$.

$$S = \lambda \prod_{i \in A} ((-v + \alpha_i)) \prod_{i \in B} ((u - \alpha_i)X - (v - \alpha_i))$$

$$S = \lambda \prod_{i \in A} ((-v + \alpha_i)) \prod_{i \in B} ((u - \alpha_i)X - (v - \alpha_i))$$
$$= \lambda \prod_{i \in A} ((-v + \alpha_i)) \prod_{i \in B} ((u - \alpha_i)) \prod_{i \in B} \left(X - \frac{v - \alpha_i}{u - \alpha_i}\right).$$

Donc les racines de S sont les $\frac{v-\alpha_i}{v-\alpha_i}$ pour $i \in B$ et son coefficient dominant est

$$\lambda \prod_{i \in A} ((-v + \alpha_i)) \prod_{i \in B} ((u - \alpha_i)).$$

$$\begin{aligned} & \text{Donc } M(S) = |\lambda| \prod_{i \in A} |(v - \alpha_i)| \prod_{i \in B} |(u - \alpha_i)| \prod_{i \in B} \max \left\{1, \left|\frac{v - \alpha_i}{u - \alpha_i}\right|\right\}. \\ & \text{Ainsi } M(S) = |\lambda| \prod_{i \in A} \max \left\{\left|u - \alpha_i\right|, \left|v - \alpha_i\right|\right\} \prod_{i \in B} \max \left\{\left|u - \alpha_i\right|, \left|v - \alpha_i\right|\right\}; \end{aligned}$$

Ainsi
$$M(S) = |\lambda| \prod_{i \in A} \max\{|u - \alpha_i|, |v - \alpha_i|\} \prod_{i \in B} \max\{|u - \alpha_i|, |v - \alpha_i|\};$$

et finalement
$$M(S) = |\lambda| \prod_{i=1}^{n+m} \max\{|u - \alpha_i|, |v - \alpha_i|\}.$$

3.20. donne alors $||Q||_{\mathbb{D}} ||R||_{\mathbb{D}} \leq M(S)$.

$$3.22. \ M(S) = \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \left(\ln|e^{it} - 1|^{m+n} + \ln\left|P\left(\frac{ue^{it} - v}{e^{it} - 1}\right)\right|\right) dt\right)$$

$$= M((X - 1)^{m+n}) \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left|P\left(\frac{ue^{it} - v}{e^{it} - 1}\right)\right| dt\right).$$
On a $M((X - 1)^{m+n}) = 1$, donc
$$M(S) = \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left|P\left(\frac{ue^{it} - v}{e^{it} - 1}\right)\right| dt\right).$$
D'après 3.19. on a donc:
$$M(S) \leq \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\|P\|_{\mathbb{D}} \max\left\{1, \left|\frac{ue^{it} - v}{e^{it} - 1}\right|^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{1, \left|\frac{ue^{it} - v}{e^{it} - 1}\right|^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\frac{1}{|e^{it} - 1|^{n+m}} \max\left\{|e^{it} - 1|^{n+m}, |ue^{it} - v|^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{|e^{it} - 1|^{n+m}, |ue^{it} - v|^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{|e^{it} - 1|^{n+m}, (|u| |e^{it} - w|)^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{|e^{it} - 1|^{n+m}, (|u| |e^{it} - w|)^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{1}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{|e^{it} - 1|^{n+m}, |e^{it} - w|\right)^{n+m}\right\}\right) dt\right)$$

$$M(S) \leq \|P\|_{\mathbb{D}} \exp\left(\frac{n+m}{2\pi} \int_{0}^{2\pi} \ln\left(\max\left\{|e^{it} - 1|, |e^{it} - w|\right)\right\}\right) dt\right)$$

3.23. Il s'agit donc de montrer que :

$$\begin{split} &\int_0^{2\pi} \ln\left(\max\left\{\left|\mathbf{e}^{it}-1\right|,\left|\mathbf{e}^{it}-w\right|\right)\right) \, \mathrm{d}t \leq \int_0^{2\pi} \ln\left(\max\left\{\left|\mathbf{e}^{it}-1\right|,\left|\mathbf{e}^{it}+1\right|\right)\right) \, \mathrm{d}t \\ &\text{Or } w \text{ s'écrit } w = \mathbf{e}^{i\psi} \text{ pour } \psi \in [0,2\pi[,\text{ de plus pour tout réel } \theta,\,\left|\mathbf{e}^{i\theta}-1\right| = 2 \left|\sin\left(\frac{\theta}{2}\right)\right|. \\ &\int_0^{2\pi} \ln\left(\max\left\{\left|\mathbf{e}^{it}-1\right|,\left|\mathbf{e}^{it}-w\right|\right)\right) \, \mathrm{d}t = \int_0^{2\pi} \ln\left(\max\left\{\left|\mathbf{e}^{it}-1\right|,\left|\mathbf{e}^{it}-\mathbf{e}^{i\psi}\right|\right)\right) \right) \, \mathrm{d}t \\ &= 2 \int_0^{2\pi} \ln\left(\max\left\{\left|\sin\left(\frac{t}{2}\right)\right|,\left|\sin\left(\frac{t-\psi}{2}\right)\right|\right\}\right) \, \mathrm{d}t \\ &= 2 \int_0^{\pi} \ln\left(\max\left\{\left|\sin\left(t\right)\right|,\left|\sin\left(t-\frac{\psi}{2}\right)\right|\right)\right) \, \mathrm{d}t + 2 \int_{\psi/2}^{\pi} \ln\left(\max\left\{\sin\left(t\right),\sin\left(t-\frac{\psi}{2}\right)\right\}\right) \, \mathrm{d}t \\ &= 2 \int_0^{\psi/2} \ln\left(\min\left\{\left|\sin\left(\frac{\psi}{2}-t\right)\right|\right) \, \mathrm{d}t + 2 \int_{\psi/4}^{\psi/2} \ln\left(\sin\left(t\right)\right) \, \mathrm{d}t + 2 \int_{\psi/2}^{\pi/2+\psi/4} \ln\left(\sin\left(t\right)\right) \, \mathrm{d}t \\ &+ 2 \int_{\pi/2+\psi/4}^{\pi} \ln\left(\sin\left(t-\frac{\psi}{2}\right)\right) \, \mathrm{d}t \\ &= 4 \int_{\psi/4}^{\psi/2} \ln\left(\sin\left(t\right)\right) \, \mathrm{d}t + 4 \int_{\psi/2}^{\pi/2+\psi/4} \ln\left(\sin\left(t\right)\right) \, \mathrm{d}t \end{split}$$

$$= 4 \int_{\psi/4}^{\pi/2 + \psi/4} \ln(\sin(t)) dt$$

$$= 4 \int_{0}^{\pi/2} \ln(\sin(t)) dt + 4 \int_{\pi/2}^{\pi/2 + \psi/4} \ln(\sin(t)) dt - 4 \int_{0}^{\psi/4} \ln(\sin(t)) dt$$

$$= 4 \int_{0}^{\pi/2} \ln(\sin(t)) dt + 4 \int_{0}^{\psi/4} \ln\left(\sin\left(t + \frac{\pi}{2}\right)\right) dt - 4 \int_{0}^{\psi/4} \ln(\sin(t)) dt$$

$$= 4 \int_{0}^{\pi/2} \ln(\sin(t)) dt + 4 \int_{0}^{\psi/4} \ln(\cos(t)) dt - 4 \int_{0}^{\psi/4} \ln(\sin(t)) dt$$

$$= 4 \int_{0}^{\pi/2} \ln(\sin(t)) dt + 4 \int_{0}^{\psi/4} (\ln(\cos(t)) - \ln(\sin(t))) dt$$

Cette quantité est maximale si $\int_0^{\psi/4} \left(\ln\left(\cos\left(t\right)\right) - \ln\left(\sin(t)\right)\right) \mathrm{d}t$ est maximale avec $\psi/4 \in [0,\pi/2]$ or la fonction intégrée est positive sur $[0,\pi/4]$ et négative sur $[\pi/4,\pi]$ donc la quantité est maximale pour $\psi/4 = \pi/4$, i.e. pour $\psi = \pi$.

Ainsi la plus grande valeur possible de $\int_0^{2\pi} \ln\left(\max\left\{\left|e^{it}-1\right|,\left|e^{it}-w\right|\right)\right\}\right) dt$ est obtenue pour $w=e^{i\pi}$ i.e. pour w=-1 ce qui donne le résultat voulu.

Remarque de l'auteur du corrigé : cette méthode est assez alambiquée et il y a sûrement plus simple mais je n'ai pas trouvé mieux.

3.24.
$$I = \int_{0}^{2\pi} \ln\left(\max\left\{\left|e^{it} - 1\right|, \left|e^{it} + 1\right|\right)\right\} dt$$
$$= \int_{-\pi/2}^{3\pi/2} \ln\left(\max\left\{\left|e^{it} - 1\right|, \left|e^{it} + 1\right|\right)\right\} dt$$
$$= 2 \int_{-\pi/2}^{\pi/2} \ln\left(\left|e^{it} + 1\right|\right) dt.$$

Pour
$$r \in [0, 1[$$
 on pose $I_r = \int_{-\pi/2}^{\pi/2} \ln(|re^{it} + 1|) dt$

On a avec 2.13.
$$I_r = -\operatorname{Re}\left(\int_{-\pi/2}^{\pi/2} \sum_{i=1}^{+\infty} \frac{r^n e^{int}}{n} dt\right)$$
.

Par convergence normale on peut intervertir série et intégrale :

$$I_r = -\operatorname{Re}\left(\sum_{n=1}^{+\infty} \frac{r^n}{n} \int_{-\pi/2}^{\pi/2} e^{int} dt\right) = -\operatorname{Re}\left(\sum_{n=1}^{+\infty} \frac{r^n}{n^2} 2\sin\left(n\frac{\pi}{2}\right)\right) = -2\sum_{n=1}^{+\infty} \frac{r^n}{n^2} \sin\left(n\frac{\pi}{2}\right)$$
$$= 2\sum_{k=0}^{+\infty} \frac{r^{2k+1}}{(2k+1)^2} \sin\left((2k+1)\frac{\pi}{2}\right) = 2\sum_{k=0}^{+\infty} (-1)^k \frac{r^{2k+1}}{(2k+1)^2}$$

Il reste à passer à la limite en 1.

Par convergence normale sur [0,1] la fonction $r \mapsto \sum_{k=0}^{+\infty} (-1)^k \frac{r^{2k+1}}{(2k+1)^2}$ est continue en 1.

Par ailleurs un travail similaire à celui fait en 2.15. assure grâce au théorème de convergence dominée que $\lim_{r\to 1} (I_r) = \int_{-\pi/2}^{\pi/2} \ln\left(\left|e^{it}+1\right|\right) dt$.

On en déduit donc que
$$I = 4 \sum_{k=0}^{+\infty} (-1)^k \frac{r^{2k+1}}{(2k+1)^2}$$
.

3.25. Par critère spécifique des séries alternées, deux sommes partielles consécutives de la série $\sum_{k>0} (-1)^k \frac{r^{2k+1}}{(2k+1)^2}$ encadrent sa somme totale.

Ceci assure que les valeurs obtenues par la calculatrice encadrent I on a donc bien une valeur approchée de I à 10^{-2} près en prenant 1,79.

3.26. Pour $k \in \mathbb{N}^*$ on pose $\omega_k = e^{i\frac{2\pi}{k}}$

On a
$$Q_k R_k = X^k - 1$$
 donc $||Q_k R_k||_{\mathbb{D}} = 2$.

$$\operatorname{Par \ ailleurs}\ \left\|Q_{k}\right\|_{\mathbb{D}} \geq \left|Q_{k}(-1)\right| = \prod_{\zeta \in U}\left|\zeta+1\right| = \prod_{\zeta \in U} \max\left\{\left|\zeta+1\right|,\left|\zeta-1\right|\right\} \,.$$

De même
$$\|R_k\|_{\mathbb{D}} \ge |R_k(1)| = \prod_{\zeta \in V} |\zeta - 1| = \prod_{\zeta \in V} \max\{|\zeta + 1|, |\zeta - 1|\}$$

Donc
$$\|Q_k\|_{\mathbb{D}} \|R_k\|_{\mathbb{D}} \ge \prod_{\zeta \in U \cup V} \max\left\{\left|\zeta + 1\right|, \left|\zeta - 1\right|\right\} = \prod_{j=0}^{n-1} \max\left\{\left|\omega_k^j + 1\right|, \left|\omega_k^j - 1\right|\right\}.$$

Posons \mathcal{E} l'ensemble dont l'énoncé veut déterminer la borne inférieure et $\lambda \in \mathcal{E}$ (qui est nécessairement strictement positif).

On a:
$$\forall k \in \mathbb{N}^*, \ \lambda^k \ge \frac{\|Q_k\|_{\mathbb{D}} \|R_k\|_{\mathbb{D}}}{\|Q_k R_k\|_{\mathbb{D}}} = \frac{1}{2} \prod_{j=0}^{n-1} \max \left\{ \left| \omega_k^j + 1 \right|, \left| \omega_k^j - 1 \right| \right\}$$

donc
$$\lambda \ge \exp\left(\frac{1}{k}\ln\left(\frac{1}{2}\prod_{j=0}^{n-1}\max\left\{\left|\omega_k^j+1\right|,\left|\omega_k^j-1\right|\right\}\right)\right);$$

i.e.
$$\lambda \ge \exp\left(\frac{1}{k}\ln\left(\frac{1}{2}\right)\right)\exp\left(\frac{1}{k}\sum_{j=0}^{n-1}\ln\left(\max\left\{\left|\omega_k^j+1\right|,\left|\omega_k^j-1\right|\right\}\right)\right)$$

i.e.
$$\lambda \ge \exp\left(\frac{1}{k}\ln\left(\frac{1}{2}\right)\right) \exp\left(\frac{1}{k}\sum_{j=0}^{n-1}\ln\left(\max\left\{\left|e^{i2\pi\frac{j}{k}}+1\right|,\left|\left|e^{i2\pi\frac{j}{k}}-1\right|\right|\right\}\right)\right)$$

Posons $f: t \mapsto \ln \left(\max \left\{ \left| e^{it} + 1 \right|, \left| \left| e^{it} - 1 \right| \right| \right\} \right)$, c'est une fonction continue sur $[0, 2\pi]$ par composition de fonctions continues.

On a pour tout $k \in \mathbb{N}^*$:

$$\frac{1}{k} \sum_{j=0}^{n-1} \ln \left(\max \left\{ \left| e^{i2\pi \frac{j}{k}} + 1 \right|, \left| \left| e^{i2\pi \frac{j}{k}} - 1 \right| \right| \right\} \right) = \frac{1}{k} \sum_{j=0}^{n-1} f\left(\frac{2\pi}{k}\right) = \frac{1}{2\pi} \left(\frac{2\pi}{k} \sum_{j=0}^{n-1} f\left(\frac{2\pi}{k}\right) \right).$$

Par sommes de Riemann :
$$\lim_{k \to +\infty} \left(\frac{2\pi}{k} \sum_{j=0}^{n-1} f\left(\frac{2\pi}{k}\right) \right) = \int_0^{2\pi} f(t) dt$$
.

$$\operatorname{Donc} \lim_{k \to +\infty} \left(\frac{1}{k} \sum_{j=0}^{n-1} \ln \left(\max \left\{ \left| e^{i2\pi \frac{j}{k}} + 1 \right|, \left| \left| e^{i2\pi \frac{j}{k}} - 1 \right| \right| \right\} \right) \right) = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt.$$

Par passage à la limite dans l'inégalité ci-dessus on a donc :

$$\lambda \ge \exp\left(\frac{1}{2\pi} \int_0^{2\pi} f(t) dt\right) = \exp\left(\frac{I}{2\pi}\right) = C.$$

Par ailleurs on a $C \in \mathcal{E}$ d'après 3.23., ce qui assure que C est le minimum de \mathcal{E} (et donc sa borne inférieure).

Partie IV

4.27. On utilise le fait que $h: x \mapsto \frac{b-a}{d-c}(x-c) + a$ réalise une bijection de J vers I telle que h(c) = a et h(d) = b.

On pose donc $C(X) = A\left(\frac{b-a}{d-c}(X-c) + a\right)$ et $D(X) = B\left(\frac{b-a}{d-c}(X-c) + a\right)$, on a les résultats voulus.

4.28. On pose \mathcal{E}_I l'ensemble dont $C_{n,m}^I$ est par définition la borne supérieure.

La question précédente assure que pour tout couple de segments (I,J) on a $\mathcal{E}_I \subset \mathcal{E}_J$, et par symétrie des rôles de I et J on a aussi $\mathcal{E}_J \subset \mathcal{E}_I$ et finalement $\mathcal{E}_I = \mathcal{E}_J$, ce qui assure que $C_{n,m}^I = C_{n,m}^J$.

4.29. On a évidemment $||Q_0R_0||_J \leq ||Q_0R_0||_I$.

De plus $\|Q_0R_0\|_J \ge \frac{1}{C_{n,m}} \|Q_0\|_J \|R_0\|_J = \frac{1}{C_{n,m}} \|Q_0\|_I \|R_0\|_I = \|Q_0R_0\|_I.$

On a donc $||Q_0R_0||_I = ||Q_0R_0||_I$.

4.30. On pose c et d dans I tels que $||Q_0||_I = |Q_0(c)|$ et $||R_0||_I = |R_0(d)|$.

On définit J comme au 4.27.

On a donc $||Q_0||_J = ||Q_0||_I = |Q_0(c)|$ et $||R_0||_J = ||R_0||_I = |R_0(d)|$.

Cela assure aussi par 4.29. que $||Q_0R_0||_I = ||Q_0R_0||_I$.

Ainsi que cela est possible par 4.27, on introduit Q_1 et R_1 tels que $||Q_1||_I = ||Q_0||_J$, $||R_1||_I = ||R_0||_J$, $||Q_1R_1||_I = ||Q_0R_0||_J$, $Q_1(-1) = Q_0(c)$ et $R_1(1) = R_0(d)$.

Finalement : $||Q_1||_I = ||Q_0||_I = ||Q_0||_I = |Q_0(c)| = |Q_1(-1)|$.

De même : $||R_1||_I = ||R_0||_J = ||R_0||_I = |R_0(d)| = |R_1(1)|$.

Enfin: $C_{n,m} \|Q_1 R_1\|_I = C_{n,m} \|Q_0 R_0\|_J = C_{n,m} \|Q_0 R_0\|_I = \|Q_0\|_I \|R_0\|_I = \|Q_1\|_I \|R_1\|_I$. La paire (Q_1, R_1) convient.

4.31. Les polynômes Q_2 et R_2 sont de degrés respectifs n et m.

On a trivialement $||Q_2||_I = |Q_2(-1)| = ||Q_1||_I$ et $||R_2||_I = |R_2(1)| = ||R_1||_I$.

Par ailleurs, pour tout $x \in [-1, 1], |Q_2(x)R_2(x)| \le |Q_1(x)R_1(x)| \le |Q_1R_1|$

Donc $||Q_2R_2||_I \le ||Q_1R_1||_I = \frac{1}{C_{n,m}} ||Q_1||_I ||R_1||_I = \frac{1}{C_{n,m}} ||Q_2||_I ||R_2||_I.$

On a $||Q_2||_I ||R_2||_I \ge C_{n,m} ||Q_2R_2||_I$, l'inégalité réciproque étant immédiate par définition de $C_{n,m}$ on a donc $||Q_2||_I ||R_2||_I = C_{n,m} ||Q_2R_2||_I$.

La paire (Q_2, R_2) est une bonne paire extrémale.

4.32. On a $|S_2(-1)| = |Q_2(-1)|$.

Pour $x \in [-1,1]$, par second côté de inégalité triangulaire :

 $|x+1-|\omega+1|| \leq |x+1-\omega-1| = |x-\omega|$

donc $|S_2(x)| = |x+1-|\omega+1| |S(x)| \le |x-\omega| |S(x)| = |Q_2(x)|$.

Ceci assure $||S_2||_I = ||Q_2||_I = |S_2(-1)|$.

Par ailleurs, pour tout $x \in [-1, 1], |S_2(x)R_2(x)| \le |Q_2(x)R_2(x)| \text{ donc } ||S_2R_2||_I \le ||Q_2R_2||_I$

Comme à 4.31 on a ainsi $||S_2R_2||_I \le ||Q_2R_2||_I = \frac{1}{C_{n,m}} ||Q_2||_I ||R_2||_I = \frac{1}{C_{n,m}} ||S_2||_I ||R_2||_I$.

10

Ce qui assure $\|S_2\|_I \|R_2\|_I = C_{n,m} \|S_2R_2\|_I$.

La paire (S_2, R_2) est une bonne paire extrémale.

4.33. On applique la question précédente avec toutes les racines de Q_2 les unes après les autres ce qui consiste à remplacer Q_2 par un polynôme Q_3 dont les racines sont exactement les $-1 + |\omega + 1|$ pour ω racine de Q_2 donc dont les racines sont dans $[-1, +\infty[$.

La question précédente assure que (Q_3, R_2) est toujours une bonne paire extrémale.

4.34. Supposons que ω est une racine de Q_3 qui n'est pas dans [-1,1] (donc $\omega > 1$) et posons $S_3 = \frac{X-1}{X-\omega}Q_3$.

On pose T tel que $Q_3 = (X - \omega)T(X)$, on a $S_3 = (X - 1)T(X)$

Montrons que (S_3, R_2) est toujours une bonne paire extrémale.

On a
$$|S_3(-1)| = 2|T(-1)| = \frac{2}{\omega+1}|Q_3(-1)| = \frac{2}{\omega+1}||Q_3||_I$$
.

Et pour
$$x \in [-1, 1], |S_3(x)| = \frac{|x - 1|}{|x - \omega|} |Q_3(x)| \le \frac{2}{\omega - x} ||Q_3||_I \le \frac{2}{\omega + 1} ||Q_3||_I = |S_3(-1)|.$$

Donc
$$||S_3||_I = |S_3(-1)| = \frac{2}{\omega + 1} ||Q_3||_I$$
.

Enfin:
$$||S_3R_2||_I \le \frac{2}{\omega+1} ||Q_3R_2||_I = \frac{1}{C_{n,m}} \frac{2}{\omega+1} ||Q_3||_I ||R_2||_I = \frac{1}{C_{n,m}} ||S_3||_I ||R_2||_I.$$

Ce qui assure $||S_3||_I ||R_2||_I = C_{n,m} ||S_3R_2||_I$.

La paire (S_3, R_2) est une bonne paire extrémale.

Puisque l'on peut procéder ainsi pour tout $\omega > 1$ racine de Q_3 on peut construire Q_4 à racines dans I tel que (Q_4, R_2) soit une bonne paire extrémale.

- 4.35. On applique maintenant à R_2 les mêmes méthodes pour obtenir R_3 puis R_4 et on obtient (Q_4, R_4) très bonne paire extrémale.
- 4.36. Posons $\tilde{Q} = \prod_{k=m+1}^{m+n} (X x_k)$ et $\tilde{R} = \prod_{k=1}^{m} (X x_k)$; on a $QR = \tilde{Q}R$.

Puisque les racines de Q font partie des x_1, \ldots, x_n où $-1 \le x_1 \le \cdots \le x_n \le 1$ on a $\|Q\|_I = |Q(-1)| \le \left| \stackrel{\sim}{Q}(-1) \right|$ et de plus $Q = \stackrel{\sim}{Q} \Leftrightarrow |Q(-1)| = \left| \stackrel{\sim}{Q}(-1) \right|$.

De même
$$||R||_I = |R(1)| \le \left| \tilde{R}(1) \right|$$
 et de plus $R = \tilde{R} \Leftrightarrow |R(1)| = \left| \tilde{R}(1) \right|$.

On a notamment $\|\widetilde{Q}\|_{I} \geq \|Q\|_{I}$ et $\|\widetilde{R}\|_{I} \geq \|R\|_{I}$.

Ainsi
$$\left\|\widetilde{Q}\right\|_{I} \left\|\widetilde{R}\right\|_{I} \ge \left\|Q\right\|_{I} \left\|R\right\|_{I} = C_{n,m} \left\|QR\right\|_{I} = C_{n,m} \left\|\widetilde{Q}\widetilde{R}\right\|_{I} \ge \left\|\widetilde{Q}\right\|_{I} \left\|\widetilde{R}\right\|_{I}.$$

On a donc
$$\left\| \tilde{Q} \right\|_{I} \left\| \tilde{R} \right\|_{I} = \left\| Q \right\|_{I} \left\| R \right\|_{I}$$
 ce qui assure $\left\| \tilde{Q} \right\|_{I} = \left\| Q \right\|_{I}$ et $\left\| \tilde{R} \right\|_{I} = \left\| R \right\|_{I}$.

Les équivalences précédentes assurent bien Q = Q et R = R.

- 4.37. C'est immédiat puisque pour tout $k \in [m+1, m+n]$, $x \mapsto |x-x_k|$ est décroissante sur $|-\infty, -1|$.
- 4.38. Supposons par l'absurde que $|P(-1)| \neq ||P||_{I_{\varepsilon}}$ on a donc $|P(-1)| < ||P||_{I_{\varepsilon}}$.

Par continuité de P cela assure qu'il existe $\varepsilon>0$ tel que, pour tout $x\in[-1-\varepsilon,-1]$, $|P(x)|<\|P\|_{I_\varepsilon}$.

Fixons un tel ε on a $\|P\|_{I_{\varepsilon}} = \|P\|_{I}$.

Or 4.37 assure que $\|Q\|_{I_{\varepsilon}} > \|Q\|_{I}$ et par ailleurs $\|R\|_{I_{\varepsilon}} \ge \|R\|_{I} > 0$.

On a donc
$$\frac{\|Q\|_{I_{\varepsilon}}\|R\|_{I_{\varepsilon}}}{\|P\|_{I_{\varepsilon}}} > \frac{\|Q\|_{I}\|R\|_{I}}{\|P\|_{I}} = C_{n,m}.$$

Ce qui contredit la définition de $C_{n,m}$ (indépendant du segment) et achève la démonstration par l'absurde : on a $|P(-1)| = ||P||_{I_{\varepsilon}}$.

4.39. On pose $\varepsilon > 0$.

On remarque que S est strictement positive et continue sur $[-1,1]\setminus]x_k - \varepsilon, x_{k+1} + \varepsilon[$ qui est un fermé borné donc S admet un minimum $\alpha > 0$ sur $[-1,1]\setminus]x_k - \varepsilon, x_{k+1} + \varepsilon[$.

On pose
$$T = S - \frac{\min\{\alpha, \varepsilon\}}{2}(X+1)$$
.

On a
$$T(-1) = S(-1)$$
.

Pour tout
$$x \in I$$
, $|T(x) - S(x)| = \frac{\min \{\alpha, \varepsilon\}}{2} (1+x) \le \varepsilon \text{ donc } ||S - T||_I \le \varepsilon$.

Pour tout
$$x \in]-1,1] \setminus]x_k - \varepsilon, x_{k+1} + \varepsilon[$$
, on a $S(x) \ge \alpha$ et $0 < \frac{\min\{\alpha, \varepsilon\}}{2}(x+1) \le \alpha$ donc $0 \le T(x) < S(x)$ ce qui assure $|T(x)| < |S(x)|$.

Le polynôme T convient; on remarque de plus que T(-1) > 0, $T(x_k) < 0$ et si $\varepsilon < S(1)$, T(1) > 0; dans ce cas par théorème des valeurs intermédiaires, T est toujours à racines dans]-1,1[.

Montrons par l'absurde qu'il existe $y \in]x_k, x_{k+1}[$ tel que $|P(y)| = ||P||_I$, on suppose que que : $\forall y \in]x_k, x_{k+1}[, |P(y)| < ||P||_I$.

Puisque $P(x_k) = P(x_{k+1}) = 0$ on a aussi : $\forall y \in [x_k, x_{k+1}], |P(y)| < ||P||_I$, par continuité sur le fermé borné $[x_k, x_{k+1}]$ cela assure qu'on peut poser $\beta > 0$ tel que $\forall y \in [x_k, x_{k+1}], |P(y)| \le ||P||_I - \beta$.

Par continuité de P en ses racines x_k et x_{k+1} on peut poser $\gamma>0$ tel que $\forall y\in [x_k-\gamma,x_{k+1}+\gamma],\, |P(y)|\leq \|P\|_I-\beta.$

On posant
$$U = \prod_{i \in [m+1, m+n] \setminus \{k, k+1\}} (X - x_i)$$
 on a $Q = SU$ et $P = SUR$.

On pose alors $\varepsilon = \min \left\{ \gamma, \frac{\beta}{\|UR\|_I}, S(1) \right\}$ et on considère T défini tel que ci-dessus.

On a T(-1) = S(-1) donc (TUR)(-1) = P(-1) et donc $||TUR||_I \ge ||P||_I$.

De plus pour tout $x \in]-1,1]$:

- $-\sin x \notin |x_k \varepsilon, x_{k+1} + \varepsilon|, |T(x)| < |S(x)| \text{ donc } |(TUR)x| \le |(SUR)(x)| \le ||P||_T;$
- si $x \in]x_k \varepsilon, x_{k+1} + \varepsilon[$, on aussi $x \in [x_k \gamma, x_{k+1} + \gamma]$ donc $|P(x)| \le |P||_I \beta$. Or $||S - T||_I \le \varepsilon$, donc $|T(x)| \le |S(x)| + \varepsilon$ et ainsi $|(TUR)x)| \le |(SUR)(x)| + \varepsilon |(UR)(x)| \le |P(x)| + \varepsilon ||UR||_I \le ||P||_I - \beta + \varepsilon ||UR||_I$ Or par définition, $\varepsilon ||UR||_I \le \beta$ donc $|(TUR)x)| \le ||P||_I$.

On a donc démontré que $||TUR||_I = ||P||_I$.

Puisque (TU)(-1) = Q(-1) donc a aussi $||TU||_I \ge ||Q||_I$.

On a également $\left\|TU\right\|_{I}\left\|R\right\|_{I}\leq C_{n,m}\left\|TUR\right\|_{I}=C_{n,m}\left\|P\right\|_{I}=\left\|Q\right\|_{I}\left\|R\right\|_{I}$ donc $\left\|TU\right\|_{I}\leq \left\|Q\right\|_{I}$ et ainsi $\left\|TU\right\|_{I}=\left\|Q\right\|_{I}.$

Finalement $||TU||_I ||R||_I = C_{n,m} ||TUR||_I$ avec également $||TU||_I = |(TU)(-1)|$, TU unitaire de degré n et TU à racines dans [-1,1], le couple (TU,R) est une très bonne paire extrémale.

Ceci implique $||TUR||_I = |(TUR)(1|)$ or $||TUR||_I = ||P||_I = |(SUR)(1)|$, on a donc |T(1)| = |S(1)| ce qui contredit la définition de T est achève la démonstration par l'absurde.

4.40. On pose
$$S = (X - x_m)(X - x_{m+1}), U = \prod_{k=m+2}^{m+n} (X - x_k)$$
 et $V = \prod_{k=1}^{m-1} (X - x_k)$.

On a
$$Q = (X - x_{m+1})U$$
, $R = (X - x_m)V$ et $P = USV$.

On travaille de nouveau par l'absurde pour montrer qu'il existe $y \in]x_m, x_{m+1}[$ tel que $|P(y)| = ||P||_I$, on suppose que que : $\forall y \in]x_m, x_{m+1}[, |P(y)| < ||P||_I$.

Comme ci-dessus on peut poser $\beta > 0$ et $\gamma > 0$ tel que

$$\forall y \in [x_m - \gamma, x_{m+1} + \gamma], |P(y)| \le ||P||_I - \beta.$$

Pour un $\lambda \in]0,1[$ donné on pose $T_{\lambda} = \lambda(X-1)(X+1) + (1-\lambda)S$, polynôme unitaire de degré 2 qui est égal à $[1-\lambda)S$ en 1 et -1 donc strictement positif et qui est strictement négatif en x_m et x_{m+1} donc qui admet deux racines dans]-1,1[, l'une dans $]-1,x_m[$ et l'autre dans $]x_{m+1},1[$.

$$\text{Posons } \varepsilon = \min \bigg\{ \gamma, \frac{\beta}{\|UV\|_I} \bigg\}.$$

S est strictement positive et continue sur $[-1,1]\setminus]x_m-\varepsilon, x_{m+1}+\varepsilon[$ qui est un fermé borné donc on peut poser $\alpha\in]0,1[$ qui minore S sur $[-1,1]\setminus]x_m-\varepsilon, x_{m+1}+\varepsilon[$.

De plus pour $x \in [-1,1], -1 \le (x-1)(x+1) \le 0$ donc pour λ tel que $(1-\lambda)\alpha \le \alpha$ (i.e. $\lambda \le \frac{\alpha}{\alpha+1}$) on a, pour tout $x \in [-1,1] \setminus]x_m - \varepsilon, x_{m+1} + \varepsilon[, 0 \le T(x) \le S(x).$

De plus
$$||T_{\lambda} - S||_{I} \le \lambda (1 + ||S||_{I})$$
 donc pour $\lambda \le \frac{\varepsilon}{1 + ||S||_{I}}$ on a $||T_{\lambda} - S||_{I} \le \varepsilon$.

On pose donc $\lambda = \min\left\{\frac{\alpha}{\alpha+1}, \frac{\varepsilon}{1+\|S\|_I}\right\}$ et on note u et v les racines de T_λ telles que $v \in]-1, x_m[$ et $]u \in x_{m+1}, 1[$.

On considère alors $UT_{\lambda}V$ alors :

- pour tout $x \in [-1,1] \setminus]x_m \varepsilon, x_{m+1} + \varepsilon[$ on a $|(UT_{\lambda}V)(x)| \le |(USV)(x)| = |P(x)| \le ||P||_I$
- puisque $\varepsilon \leq \gamma$, pour tout $x \in [x_m \varepsilon, x_{m+1} + \varepsilon]$, $|(UT_{\lambda}V)(x)| \leq |(USV)(x)| + \varepsilon |(UV)(x)| = |P(x)| + \varepsilon |(UV)(x)| \leq ||P||_I \beta + \varepsilon ||UV||_I \leq ||P||_I$.

On a donc justifié $||UT_{\lambda}V||_{I} \leq ||P||_{I}$.

Or $UT_{\lambda}V = U(X - u)(X - v)V$ avec $v \in]-1, x_m[$ et $]u \in x_{m+1}, 1[$.

Ainsi $|(U(X-u))(-1)| = |U(-1)|(1+u) > |U(-1)|(1+x_{m+1}) = |Q(-1)| = ||Q||_I$ donc $||U(X-u)||_I > ||Q||_I$.

De même on a $|(V(X-v))(1)| = |V(1)|(1-v) > |V(1)|(1-x_m) = |R(1)| = ||R||_I$ donc $||V(X-v)||_I > ||R||_I$.

Ainsi $||U(X-u)||_I ||V(X-v)||_I > ||Q||_I ||R||_I = C_{n,m} ||P||_I \ge C_{n,m} ||UT_{\lambda}V||_I$

On a donc : $||U(X-u)||_I ||V(X-v)||_I > C_{n,m} ||U(X-u)(X-v)V||_I$ ce qui contredit la définition de $C_{n,m}$ et achève la démonstration par l'absurde.

4.41. Les questions précédentes assurent que pour tout $k \in [1, m+n-1]$, P est de signe constant et admet un extremum sur $]x_k, x_{k+1}[$ en un point qu'on note y_k où on a donc $P'(y_k) = 0$ et $|P(y_k)| = |P|_I$.

Or P' est de degré (m+n-1) et de coefficient dominant (m+n), les y_k sont donc exactement ses racines et $P' = (m+n) \prod_{k \in [\![1,m+n-1]\!]} (X-y_k)$

Notons $W = P^2 - ||P||_I$ qui a pour racines -1 et 1 d'une part et d'autre part tous les y_k pour $k \in [1, m+n-1]$ où sa dérivée est également nulle, donc ces y_k sont racines d'ordre au moins 2 de W.

Ainsi
$$(X-1)(X+1)\prod_{k\in [\![1,m+n-1]\!]}(X-y_k)^2$$
 divise W qui est unitaire de degré $2(m+n)$ ce

qui assure
$$W = (X - 1)(X + 1) \prod_{k \in [1]} (X - y_k)^2$$

qui assure
$$W = (X - 1)(X + 1) \prod_{k \in [\![1, m + n - 1]\!]} (X - y_k)^2$$
.
On a $W = (X - 1)(X + 1) \frac{1}{(m + n)^2} P'^2$ i.e. $\|P\|_I - P^2 = \frac{1}{(m + n)^2} (1 - X^2) P'^2$.

Remarque de l'auteur du corrigé : cette méthode ne s'inspire que peu de la précédente, peutêtre l'énoncé attend-il une autre démonstration, éventuellement plus simple, mais je n'ai pas trouvé mieux.

4.42. On dérive l'égalité précédente :
$$-2PP' = \frac{1}{(m+n)^2} \left(-2XP'^2 + (1-X^2)2P'P''\right)$$

On a donc
$$\frac{2}{(m+n)^2}P'((m+n)^2P+(1-X^2)P''-XP')=0$$
;

Puisque $P' \neq 0$, par intégrité de $\mathbb{R}[X]$ on a $(1 - X^2)P'' - XP' + (m+n)^2P = 0$.

4.43. Pour tout $y \in \mathbb{R}$, $f'(y) = -\sin(y)P'(\cos(y))$ et

$$f''(y) = -\cos(y)P'(\cos(y)) + (\sin(y))^2P''(\cos(y)) = -\cos(y)P'(\cos(y)) + (1-(\cos(y))^2)P''(\cos(y)).$$

La relation $(1-X^2)P'' - XP' + (m+n)^2P = 0$ assure donc que, pour tout $y \in \mathbb{R}$, $f''(y) = -(m+n)^2f(y)$.

f est solution d'une équation différentielle du second ordre à coefficient constant dont l'équation caractéristique est $x^2 = -(m+n)^2$ ce qui assure qu'il existe deux constantes réelles λ et μ telles que, pour tout $y \in \mathbb{R}$, $f(y) = \lambda \cos((m+n)x) + \mu \sin((m+n)y)$.

Comme
$$f'(0) = 0$$
, on a $\mu = 0$ et comme $f(0) = P(1) = ||P||_I$ (car $P(1) > 0$) on a $\lambda = ||P||_I$.

Ainsi, pour tout $y \in \mathbb{R}$, $f(y) = ||P||_I \cos((m+n)y)$.

Pour tout $x \in [-1, 1]$ on a donc :

$$P(x) = P(\cos(\arccos(x))) = f(\arccos(x)) = ||P||_I \cos((m+n)\arccos(x)).$$

4.44. On a
$$C_{n,m} = \frac{\|Q\|_I \|R\|_I}{\|P\|_I}$$
.

La question précédente assure que P admet pour racines tous les $\cos\left(\frac{(2k-1)\pi}{2(m+n)}\right)$ $k \in [1, m+n]$ qui sont des racines distinctes par injectivité de cos sur $[0, \pi]$. Cela donne m+n racines distinctes pour P qui est de degré m+n et unitaire on a donc

$$P = \prod_{k=1}^{m+n} \left(X - \cos\left(\frac{(2k-1)\pi}{2(m+n)}\right) \right).$$

Par décroissance de cos sur $[0, \pi]$, cela assure alors que $Q = \prod_{i=1}^{n} \left(X - \cos \left(\frac{(2k-1)\pi}{2(m+n)} \right) \right)$

et
$$R = \prod_{k=n+1}^{m+n} \left(X - \cos \left(\frac{(2k-1)\pi}{2(m+n)} \right) \right)$$
.

On a ainsi
$$||Q||_I = |Q(-1)| = \prod_{k=1}^n \left(1 + \cos\left(\frac{(2k-1)\pi}{2(m+n)}\right)\right);$$

de même
$$||R||_I = |R(1)| = \prod_{k=n+1}^{m+n} \left(1 - \cos\left(\frac{(2k-1)\pi}{2(m+n)}\right)\right).$$

En utilisant la formule " $\cos(\pi - x) = -\cos(x)$ " et le changement d'indice j = m + n + 1 - k on a :

$$||R||_{I} = \prod_{k=n+1}^{m+n} \left(1 + \cos\left(\frac{(2(m+n-k)+1)\pi}{2(m+n)}\right) \right) = \prod_{j=1}^{m} \left(1 + \cos\left(\frac{(2j-1)\pi}{2(m+n)}\right) \right).$$

Enfin, pour tout $x \in \mathbb{R}$, $P(\cos(x)) = \|P\|_I \cos\left((m+n)x\right)$ donc le polynôme $\frac{P}{\|P\|_I}$ est le (m+n)-ième polynôme de Tchebychev de première espèce dont le coefficient dominant est 2^{m+n-1} (ce qui n'est pas au programme de P.C. bien sûr) or le coefficient dominant de P est 1 on a donc $\frac{1}{\|P\|_I} = 2^{m+n-1}$.

On peut donc conclure

$$C_{n,m} = \frac{\|Q\|_I \|R\|_I}{\|P\|_I} = 2^{m+n-1} \left(\prod_{k=1}^n \left(1 + \cos\left(\frac{(2k-1)\pi}{2(m+n)}\right) \right) \left(\prod_{k=1}^m \left(1 + \cos\left(\frac{(2k-1)\pi}{2(m+n)}\right) \right) \right).$$