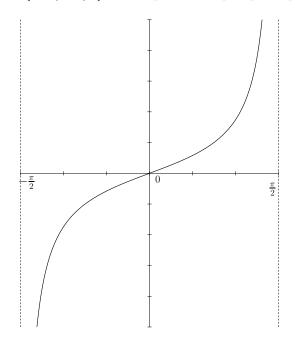
Corrigé de E3A 2015 PC math 2

Partie I A.

- 1. La fonction tan a pour période π puisque $\tan(x+\pi) = \frac{\sin(x+\pi)}{\cos(x+\pi)} = \frac{-\sin(x)}{-\cos(x)} = \tan(x)$.
- 2. La fonction tan est strictement croissante et impaire sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et elle a pour limite $+\infty$ en $\frac{\pi}{2}$. La stricte croissance de tan sur $]-\pi/2, \pi/2[$ montre que π est la plus petite période positive de tan.



3. Démontrons par récurrence sur n l'existence de la suite (T_n) .

$$\tan^{(0)}(x) = \tan x = T_0(\tan x)$$
 en posant $T_0(X) = X$.

Supposons pour un entier
$$n$$
 l'existence d'un polynôme T_n vérifiant $\tan^{(n)}(x) = T_n(\tan x)$.

En dérivant la fonction composée on obtient:
$$\tan^{(n+1)}(x) = T_n'(\tan x)(1 + \tan^2(x))$$
.

En posant
$$T_{n+1} = (1 + X^2)T'_n$$
 on obtient $\tan^{(n+1)}(x) = T_{n+1}(\tan x)$ où T_{n+1} est un polynôme.

La propriété est bien démontrée par récurrence.

4.
$$T_1 = 1 + X^2$$
, $T_2 = (1 + X^2) \times 2X = 2X^3 + 2X$ et $T_3 = (1 + X^2) \times (6X^2 + 2) = 6X^4 + 8X^2 + 2X$

5. On démontre par récurrence sur n que T_n est un polynôme de degré n+1 à coefficients dans \mathbb{N} .

C'est vrai pour
$$n = 0$$
 puisque $T_0 = X$ a pour degré 1.

Supposons le vrai pour un entier n. De $T_{n+1}=(1+X^2)T_n'$ on déduit que T_{n+1} est un polynôme à coefficients entiers $(T_n'$ l'étant) et qu'il a pour degré n+2 (le degré de T_n' est n+1-1=n). On a bien démontré la propriété par récurrence.

6. Appliquons la formule de Taylor avec reste intégral:

si
$$f$$
 est de classe C^{N+1} sur $[a, b]$ alors $f(b) = \sum_{k=0}^{N} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_a^b \frac{(b-t)^N}{N!} f^{(N+1)}(t) dt$.

1

Prenons $f = \tan$, a = 0, b = x et N = 2n + 1. La fonction tan étant impaire, ses dérivées d'ordre pair sont aussi des fonction impaires et donc s'annulent en 0. On obtient bien la formule demandée en posant $t_j = \tan^{(2j+1)}(0)$ et en utilisant $f^{(2n+2)}(t) = T_{2n+2}(\tan t)$.

Partie I B.

7. On effectue une intégration par parties sur $[0,x]\subset I$:

$$R_n(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t) dt = \left[-\frac{(x-t)^n}{n!} f^{(n)}(t) \right]_0^x + \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = \frac{x^n}{n!} f^{(n)}(0) + R_{n+1}(x).$$

- **8.** (a) Puisque $f^{(n)} \ge 0$ et b > 0 (donc $b t \ge 0$), la suite $(R_n(b))$ est positive. De plus $R_{n+1}(b) = R_n(b) \frac{b^n}{n!} f^{(n)}(0) \le R_n(b)$. La suite est décroissante, minorée par 0 donc elle converge.
 - (b) i. En effectuant le changement de variable défini par t = xu on obtient:

$$R_n(x) = \int_0^1 \frac{(x - xu)^{n-1}}{(n-1)!} f^{(n)}(xu) x du = \frac{x^n}{(n-1)!} \int_0^1 (1 - u)^{n-1} f^{(n)}(xu) du.$$

ii. On sait déjà que $R_n(x) \ge 0$ puisque $x \ge 0$. Comme $f^{(n+1)} \ge 0$, la fonction $f^{(n)}$ est croissante donc $f^{(n)}(ux) \le f^{(n)}(ub)$ et puisque $1-u \ge 0$ et $x \ge 0$ on obtient bien la majoration demandée.

iii. Avec i. et ii. on obtient
$$R_n(x) \le \left(\frac{x}{b}\right)^n \frac{b^n}{(n-1)!} \int_0^1 (1-u)^{n-1} f^{(n)}(tb) dt = \left(\frac{x}{b}\right)^n R_n(b).$$

(c) Appliquons à nouveau la formule de Taylor avec reste intégral à l'ordre n pour la fonction f sur l'intervalle [0, x] (avec x > 0).

$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0) + R_{n+1}(x) \text{ et puisque } 0 \leqslant R_n(x) \leqslant \left(\frac{x}{b}\right)^n R_n(b) \text{ tend vers } 0 \text{ quand } n \text{ tend vers } 0$$

$$+\infty$$
 (car $0 < \frac{x}{b} < 1$) on obtient bien $f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n$.

Puisque f est impaire, les $f^{(2n)}(0)$ sont nuls et l'égalité s'étend donc aux x dans]-b,0[par imparité des deux membres de l'égalité.

- 9. La fonction tan vérifie les conditions demandées pour f: elle est de classe C^{∞} sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ et pour $x \in \left]0, \frac{\pi}{2}\right[$, $\tan^{(n)}(x) = T_n(\tan(x)) \geqslant 0$ puisque T_n est à coefficients dans \mathbb{N} et $\tan(x) \geqslant 0$. Pour tout $x \in \left]0, \frac{\pi}{2}\right[$ on peut trouver un $b \in \left]x, \frac{\pi}{2}\right[$ et le résultat du I B.8.(c) s'applique. Avec $\tan^{(2n)}(0) = 0$ et en posant $t_n = \tan^{(2n+1)}(0)$ on obtient le résultat demandé.
- 10. D'après la question précédente le rayon de convergence est au moins égal à $\frac{\pi}{2}$. Mais s'il était supérieur à $\frac{\pi}{2}$, la fonction tangente aurait une limite finie en $\frac{\pi}{2}$, ce qui est faux. Le rayon de convergence est donc égal à $\frac{\pi}{2}$.

Partie II A.

1.
$$\psi_n(X^i) = \frac{1}{i+1}((X+1)^{i+1} - X^{i+1}) = \sum_{j=0}^i \frac{1}{i+1} \binom{i+1}{j} X^j$$
.

2. Si $P = \sum_{i=0}^{n} a_i X^i$ on déduit par linéarité de l'intégrale que $\psi_n(P) = \sum_{i=0}^{n} a_i \psi_n(X^i)$. Comme le degré de $\psi_n(X^i)$ est égal à $i, \psi_n(P)$ est bien un polynôme de degré inférieur ou égal à n.

2

- 3. ψ_n est linéaire par linéarité de l'intégrale et elle va de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$, c'est donc un endomorphisme de $\mathbb{R}_n[X]$.
- **4.** D'après la formule obtenue au II A.1 (en échangeant i et j), la matrice A de ψ_n dans la base canonique de $\mathbb{R}_n[X]$ est une matrice carrée d'ordre n+1 telle que $a_{i,j} = \frac{1}{j+1} \binom{j+1}{i}$ pour $i \leq j$ et $a_{i,j} = 0$ si i > j (en numérotant les lignes et les colonnes de 0 à n).
- **5.** La matrice A est donc triangulaire supérieure avec des 1 sur la diagonale $(a_{i,i} = 1)$. Elle est donc inversible $(\det(A) = 1)$ et ψ_n est donc un automorphisme de $\mathbb{R}_n[X]$.
- 6. Comme la matrice A est triangulaire, ses valeurs propres sont ses coefficients diagonaux qui sont tous égaux à 1: ψ_n a une seule valeur propre d'ordre n+1 qui est égale à 1. Si ψ_n était diagonalisable, sa matrice serait semblable à la matrice identité, donc serait égale à l'identité; c'est faux puisque $a_{0,1} = \frac{1}{2}$. Donc ψ_n n'est pas diagonalisable.
- 7. (a) Si $P = \sum_{i=0}^{n} a_i X^i$, $Q = \sum_{i=0}^{n} \frac{1}{i+1} a_i X^{i+1}$ convient.
 - (b) $\psi_n(P)(x) = [Q(t)]_x^{x+1} = Q(x+1) Q(x).$
 - (c) $\psi_n(P)'(x) = Q'(x+1) Q'(x) = P(x+1) P(x) = \psi_n(P')(x)$.

Partie II B.

- 8. On fait une démonstration par récurrence sur k. $S_0=1$ existe et est unique. Supposons l'existence et l'unicité de $S_0,...,S_k$. La condition (b) est vérifiée si et seulement si $S_{k+1}(x)=(k+1)\int_0^x S_k(t)\mathrm{d}t+C=Q_k(x)+C$. La condition (c) pour S_{k+1} est vérifiée si et seulement si $C=-\int_0^1 Q_k(t)\mathrm{d}t$. On a donc montré l'existence et l'unicité de S_{k+1} et la suite (S_m) est bien définie de manière unique par récurrence.
- 9. $S_1 = X + C$ avec $C = -\int_0^1 t dt = -\frac{1}{2}$ donc $S_1 = X \frac{1}{2}$. $S_2' = 2X - 1 \text{ donc } S_2 = X^2 - X + C \text{ avec } C = -\int_0^1 (t^2 - t) dt = -\frac{1}{3} + \frac{1}{2} = \frac{1}{6} \text{ donc } S_2 = X^2 - X + \frac{1}{6}.$ $S_3' = 3X^2 - 3X + \frac{1}{2} \text{ donc } S_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X + C \text{ avec } C = -\int_0^1 \left(t^3 - \frac{3}{2}t^2 + \frac{1}{2}t\right) dt = -\frac{1}{4} + \frac{1}{2} - \frac{1}{4} = 0$ $\text{donc } S_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X.$
- 10. On le montre par récurrence sur k. C'est vérifié pour k=0. Supposons que S_k soit un polynôme unitaire de degré k. De $S'_{k+1}=(k+1)S_k$ on déduit que le terme dominant de S_{k+1} est X^{k+1} , donc S_{k+1} est bien un polynôme unitaire de degré k+1. La propriété est démontrée par récurrence.
- **11.** Pour $k \ge 2$, $S_k(1) S_k(0) = \int_0^1 S_k'(t) dt = \int_0^1 k S_{k-1} dt = 0$ puisque (c) s'applique à $k-1 \ge 1$.
- 12. Considérons la suite (T_m) définie par $T_m(x) = (-1)^m S_m(1-x)$. Elle vérifie les conditions du II B.8: $T_0 = 1, T'_{k+1}(x) = (-1)^k S'_{k+1}(1-x) = (-1)^k (k+1) S_k(1-x) = (k+1) T_k(x)$ et pour $k \ge 1, \int_0^1 T_k(t) dt = (-1)^k (k+1) S_k(1-x) = (-1)^k S$

$$\int_0^1 (-1)^k S_k(1-t) \mathrm{d}t = \int_0^1 (-1)^k S_k(u) \mathrm{d}u = 0 \text{ en faisant le changement de variable } u = 1-t.$$
 Par unicité de la suite (S_m) , on en déduit $T_m = S_m$ pour tout m .

- 13. Montrons par récurrence sur k que S_k convient (l'unicité résulte du fait que ψ_n est bijectif). C'est vrai pour k=0 puisque $\psi_n(1)(X)=1$. Supposons pour un entier k que $\psi_n(S_k)(X)=X^k$. D'après II A.7(c) et la condition (b) du II B.8: $\psi_n(S_{k+1})'(X)=\psi_n((k+1)S_k)(X)=(k+1)X^k$. On en déduit $\psi_n(S_{k+1})(X)=X^{k+1}+C$ avec $C=\psi_n(S_{k+1})(0)=\int_0^1 S_{k+1}(t) dt=0$ avec la condition (b) du II B.8. On a bien démontré la propriété pour k+1. Elle est démontrée par récurrence.
- **14.** Avec la question II B.9. on obtient: $\sigma_1 = -\frac{1}{2}$, $\sigma_2 = \frac{1}{6}$ et $\sigma_3 = 0$.
- **15.** Pour $k \ge 3$ impair: $S_k(0) = S_k(1)$ d'après la question 11 et $S_k(0) = -S_k(1)$ en posant x = 1 dans la question 12. On a donc $\sigma_k = S_k(0) = 0$.
- 16. Montrons le par récurrence sur n. C'est vrai pour n=0 puisque $S_0(x)=1=\sigma_0$. Supposons pour un entier $n\geqslant 1$ que $S_n(x)=\sum_{k=0}^n \binom{n}{k}\sigma_k x^{n-k}$. En intégrant $S'_{n+1}=(n+1)S_n$:

$$S_{n+1}(x) = \sum_{k=0}^{n} \frac{n+1}{n-k+1} \binom{n}{k} \sigma_k x^{n-k+1} + C \text{ avec } C = S_{n+1}(0) = \sigma_{n+1}.$$

Avec
$$\frac{n+1}{n-k+1} \binom{n}{k} = \frac{(n+1)n!}{(n-k+1)k!(n-k)!} = \binom{n+1}{k}$$
 on obtient $S_{n+1}(x) = \sum_{k=0}^{n+1} \binom{n+1}{k} \sigma_k x^{n+1-k}$.

La propriété est vraie pour n+1, elle est donc démontrée par récurrence.

- 17. Pour $n \ge 2$, $S_n(1) = S_n(0) = \sigma_n$, donc en posant x = 1 dans le résultat de la question 16 on obtient $\sum_{k=0}^{n-1} \binom{n}{k} \sigma_k = 0.$
- 18. On utilise la formule précédente sous la forme: $\sigma_{n-1} = -\frac{1}{n} \sum_{k=0}^{n-2} \binom{n}{k} \sigma_k$. (*)

Écrivons en python une fonction qui calcule σ_N . Pour calculer les coefficients binomiaux on utilisera la relation de récurrence: $\binom{n}{k} = \frac{n-k+1}{k} \binom{n}{k-1}$.

def calculsigma(N):

Pour N = 50 on obtient 7.500866746076968e + 24. Remarque: en important la fonction special de scipy, special.bernoulli(50)[50] donne 7.5008667460769792e + 24 (erreur relative de 1.4e-15).

Partie III.

1. Appliquons la formule du produit de Cauchy: si $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ a pour rayon de convergence R_1 , si

 $g(z) = \sum_{n=0}^{+\infty} b_n z^n$ a pour rayon de convergence R_2 , alors en posant $c_n = \sum_{k=0}^{n} a_k b_{n-k}$, $f(z)g(z) = \sum_{n=0}^{+\infty} c_n z^n$ a un rayon de convergence au moins égal à $\min(R_1, R_2)$.

Prenons f(z) = S(z) avec $R_1 = R$ et $g(z) = e^z = \sum_{n=0}^{+\infty} \frac{1}{n!} z^n$ avec $R_2 = +\infty$.

On calcule $c_n = \sum_{k=0}^n \frac{\sigma_k}{k!} \frac{1}{(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} \sigma_k = \frac{\sigma_n}{n!}$ si $n \ge 2$ (en utilisant la question 17).

Avec $c_0 = \sigma_0$ et $c_1 = \sigma_0 + \sigma_1$ on obtient bien $S(z)e^z = S(z) + z$ pour |z| < R.

2. On en déduit pour $|z| < \frac{R}{2}$: $(e^{2iz} - 1)S(2iz) = 2iz$.

Si z = a + ib, $e^{2iz} = e^{-2b}e^{2ia}$ donc $e^{2iz} = 1$ si et seulement si b = 0 et $a \in \pi \mathbb{Z}$.

On en déduit pour $z \neq 0$ et $|z| < \rho = \min(\frac{R}{2}, \pi)$: $S(2iz) = \frac{2iz}{e^{2iz} - 1}$, d'où iT(z) = iz + S(2iz).

Il y a une erreur dans l'énoncé: il faut poser $T(0) = \frac{1}{i}$.

T admet donc un DSE sur le disque ouvert de rayon ρ : $T(z) = z + \frac{1}{i} \sum_{n=0}^{+\infty} \frac{(2i)^n \sigma_n}{n!} z^n$.

En utilisant $\sigma_1 = -\frac{1}{2}$ et $\sigma_n = 0$ pour n impair $\geqslant 3$ on obtient: $T(z) = \frac{1}{i} \sum_{n=0}^{+\infty} \frac{(-4)^n \sigma_{2n}}{(2n)!} z^{2n}$ pour $|z| < \rho$.

3. Pour $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et $x \neq 0$: $2\frac{e^{4ix}+1}{e^{4ix}-1} - \frac{e^{2ix}+1}{e^{2ix}-1} = \frac{2(e^{4ix}+1)-(e^{2ix}+1)^2}{e^{4ix}-1} = \frac{e^{4ix}-2e^{2ix}+1}{e^{4ix}-1} = \frac{e^{4ix}-2e^{4ix}+1}{e^{4ix}-1} = \frac{e^{4ix}-2e$

On en déduit: $i \tan(x) = \frac{1}{x}(T(2x) - T(x))$ donc $\tan(x) = -\frac{1}{x} \sum_{n=1}^{+\infty} \frac{(-4)^n \sigma_{2n}}{(2n)!} (4^n - 1) x^{2n}$ puisque le coefficient s'annule pour n = 0.

5

En changeant n en n+1: $\tan(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n 4^{n+1} \sigma_{2n+2}}{(2n+2)!} (4^{n+1} - 1) x^{2n+1}$.

On en déduit: $t_n = \frac{(-1)^n 4^{n+1} (4^{n+1} - 1)}{(2n+2)!} \sigma_{2n+2}$.

On vérifie que $t_0 = 1$ et en calculant $\sigma_4 = -\frac{1}{30}$ avec la formule (*) on obtient $t_1 = \frac{1}{3}$.