Corrigé E3A PC 2022

Hélène Fontaine, François Ezanno

EXERCICE 1

1. Formule des probabilités composées. Pour tous évènements A_1, \ldots, A_n tels que $\mathbb{P}(A_1 \cap \cdots \cap A_{n-1}) \neq 0$,

$$\mathbb{P}(A_1 \cap A_2 \cap \cdots \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\dots\mathbb{P}(A_n|A_1 \cap \cdots \cap A_{n-1}).$$

- **2.** On a : $\forall x \in \mathbb{R}, \ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
- 3. Les valeurs prises par X sont les entiers naturels non nuls : $X(\Omega) = \mathbb{N}^*$. Remarque. La définition de X dans l'énoncé sous-entend que le nombre de sauts réussis est presque sûrement fini, ce qui à ce stade n'est pas évident, mais sera vérifié en question 8.
- **4.** On a $\mathbb{P}(X=1) = \mathbb{P}(S_1 \cap \overline{S_2}) = \mathbb{P}(S_1)\mathbb{P}(\overline{S_2}|S_1) = 1 \times \frac{1}{2} = \frac{1}{2}$.
- 5. L'évènement [X=2] est réalisé si et seulement si les deux premiers sauts ont été réussis, mais le troisième a été raté. Autrement dit : $[X=2] = S_1 \cap S_2 \cap \overline{S_3}$. Par conséquent d'après la formule des probabilités composées,

$$\mathbb{P}(X = 2) = \mathbb{P}(S_1)\mathbb{P}(S_2|S_1)\mathbb{P}(\overline{S_3}|S_1 \cap S_2)$$

= $1 \times \frac{1}{2} \times (1 - \frac{1}{3}) = \frac{1}{3}$.

- **6.** De la même façon qu'en **5.**, on a $[X = n] = S_1 \cap \cdots \cap S_n \cap \overline{S_{n+1}}$.
- 7. D'après la formule des probabilités composées,

$$\mathbb{P}(X=n) = \mathbb{P}(S_1)\mathbb{P}(S_2|S_1)\dots\mathbb{P}(S_n|S_1\cap\dots\cap S_{n-1})\mathbb{P}(\overline{S_{n+1}}|S_1\cap\dots\cap S_n)$$

$$= 1 \times \frac{1}{2} \times \dots \times \frac{1}{n} \times \left(1 - \frac{1}{n+1}\right)$$

$$= \frac{n}{(n+1)!} = \frac{1}{(n+1)(n-1)!}.$$

8. On calcule:

$$\sum_{n=1}^{\infty} \mathbb{P}(X=n) = \sum_{n=1}^{\infty} \frac{(n+1)-1}{(n+1)!}$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n!} - \frac{1}{(n+1)!}\right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)!} \qquad \text{(car les deux séries convergent)}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n!} - \sum_{n=2}^{\infty} \frac{1}{n!} = 1.$$

9. La variable aléatoire X est à valeurs positives, et pour $n \in \mathbb{N}^*$,

$$n \ \mathbb{P}(X=n) = \frac{n}{(n+1)(n-1)!} = \frac{(n+1)-1}{(n+1)(n-1)!} = \frac{1}{(n-1)!} - \frac{1}{(n+1)(n-1)!}$$

Or $\sum_{n\geq 1} \frac{1}{(n-1)!}$ et $\sum_{n\geq 1} \frac{1}{(n+1)(n-1)!}$ sont deux séries convergentes, donc $\sum_{n\geq 1} n\mathbb{P}(X=n)$ est convergente, donc X possède une espérance et :

$$\mathbb{E}(X) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} - \sum_{n=1}^{\infty} \frac{1}{(n+1)(n-1)!}.$$

Finalement d'après 2. et 8., on a $\mathbb{E}(X) = e - 1$.

EXERCICE 2

1.1. Fixons $n \in \mathbb{N}$. On a $\int_0^{\pi/2} \cos^n(t) dt \ge 0$ (intégrale d'une fonction positive), donc

$$|u_n| = \int_0^{\pi/2} \cos^n(t) dt.$$

De plus pour $t \in [0; \pi/2]$, on a $\cos(t) \in [0; 1]$ donc $\cos^{n+1}(t) \leq \cos^{n}(t)$. Ainsi par croissance de l'intégrale, $|u_{n+1}| \leq |u_{n}|$. Conclusion. $(|u_{n}|)$ est bien décroissante.

- **1.2.** Pour $n \in \mathbb{N}$ on définit sur $]0; \pi/2]$ la fonction f_n par $f_n(t) = \cos^n(t)$. On vérifie les hypothèses du théorème de convergence dominée :
 - pour $t \in]0; \pi/2]$, $|\cos(t)| < 1$ donc $\lim_{n \to +\infty} f_n(t) = 0$. Ainsi (f_n) converge simplement sur $]0; \pi/2]$ vers la fonction $f: t \mapsto 0$;
 - les fonctions f_n , pour $n \in \mathbb{N}$, et la fonction f, sont continues (par morceaux) sur $]0; \pi/2]$;
 - $\forall n \in \mathbb{N}, \ \forall t \in]0; \pi/2], \ |f_n(t)| \leq 1, \text{ or } t \mapsto 1 \text{ est intégrable sur }]0; \pi/2].$

Conclusion. D'après le théorème de convergence dominée.

$$\lim_{n \to +\infty} |u_n| = \lim_{n \to +\infty} \int_0^{\pi/2} f_n(t) dt = \int_0^{\pi/2} 0 dt = 0.$$

- **1.3.** On a pour tout $n \in \mathbb{N}$, $u_n = (-1)^n |u_n|$, et d'après les deux questions précédentes, $(|u_n|)$ est une suite positive, décroissante et qui tend vers 0. Conclusion. D'après le critère des séries alternées, $\sum_{n=0}^{\infty} u_n$ est convergente.
- **2.1.** Pour $\theta \in \mathbb{R}$, $\cos(2\theta) = 2\cos^2(\theta) 1$, donc $\cos^2(\theta) = \frac{1 + \cos(2\theta)}{2}$. Appliquée à $\theta = t/2$, cette égalité donne : $\cos^2(t/2) = \frac{1 + \cos(t)}{2}$.
- **2.2.** En se rappelant qu'une primitive de $x \mapsto \frac{1}{\cos^2(x)}$ sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$ est $x \mapsto \tan(x)$, on a :

$$I = \int_0^{\pi/2} \frac{1}{2\cos^2(t/2)} dt = \frac{1}{2} \left[2\tan(t/2) \right]_0^{\pi/2} = \tan\left(\frac{\pi}{4}\right) - \tan(0) = 1.$$

2.3.1. Soit $n \in \mathbb{N}$. Par intégration par parties (sur des fonctions \mathcal{C}^1 sur $[0; \pi/2]$), on a :

$$\begin{aligned} |u_{n+2}| &= \int_0^{\pi/2} \cos(t) \cos^{n+1}(t) \mathrm{d}t \\ &= \left[\sin(t) \cos^{n+1}(t) \right]_0^{\pi/2} - \int_0^{\pi/2} -(n+1) \sin(t) \cos^n(t) \sin(t) \mathrm{d}t. \end{aligned}$$

Le crochet est nul car $\sin(0) = \cos(\pi/2) = 0$, et avec $\sin^2 = 1 - \cos^2$ on obtient donc

$$|u_{n+2}| = (n+1) \int_0^{\pi/2} (\cos^n(t) - \cos^{n+2}(t)) dt$$

= $(n+1)(|u_n| - |u_{n+2}|)$ (linéarité de l'intégrale),

et finalement en isolant $|u_{n+2}|$ on obtient $|u_{n+2}| = \frac{n+1}{n+2} |u_n|$.

2.3.2. Montrons par récurrence double, pour $n \in \mathbb{N}$, la propriété

$$\mathcal{P}(n): |u_n| \ge \frac{1}{n+1}.$$

- $|u_0| = \frac{\pi}{2} \ge 1$, donc $\mathcal{P}(0)$ est vraie.
- $|u_1| = \int_0^{\pi/2} \cos(t) dt = 1 \ge \frac{1}{2}$, donc $\mathcal{P}(1)$ est vraie.
- soit $n \geq 0$. Supposons $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ vraies, alors

$$|u_{n+2}| = \frac{n+1}{n+2} |u_n| \ge \frac{n+1}{n+2} \cdot \frac{1}{n+1}$$
 (par hyp. de réc.)

Donc $|u_{n+2}| \ge \frac{1}{n+2} \ge \frac{1}{n+3}$.

D'où la conclusion voulue par récurrence.

2.3.3. Il s'agirait d'appliquer le théorème d'intégration terme à terme sur $]0;\pi/2]$, en espérant obtenir l'égalité :

$$\sum_{n=0}^{\infty} u_n = \int_0^{\pi/2} \left(\sum_{n=0}^{\infty} (-1)^n \cos^n(t) \right) dt = \int_0^{\pi/2} \frac{1}{1 + \cos(t)} dt.$$

Malheureusement ce théorème ne s'applique pas. Posons $v_n: t \mapsto (-1)^n \cos^n(t)$. On a $\int_0^{\pi/2} |v_n| = |v_n| \ge \frac{1}{n+1}$, terme général d'une série divergente, donc par comparaison $\sum_{n \ge 0} \int_0^{\pi/2} |v_n|$ diverge.

Conclusion. L'hypothèse ;
; $\sum_{n>0}\int_0^{\pi/2}|v_n|$ converge;; n'est pas vérifiée.

- 2.4. On vérifie les hypothèses du théorème de convergence dominée :
 - pour $t \in]0; \pi/2], V_n(t) \xrightarrow[n \to +\infty]{1} \frac{1}{1+\cos(t)}$ (série géométrique de raison $-\cos(t) \in]-1; 1[)$. Donc (V_n) converge simplement sur $]0; \pi/2]$ vers la fonction $V: t \mapsto \frac{1}{1+\cos(t)};$
 - les fonctions V_n et la fonction V sont continues (par morceaux) sur $[0; \pi/2]$;
 - Pour $n \in \mathbb{N}$ et $t \in]0; \pi/2]$,

$$|V_n(t)| = \left| \sum_{k=0}^n (-\cos(t))^k \right| = \left| \frac{1 - (-\cos(t))^{n+1}}{1 + \cos(t)} \right| \le \frac{2}{1 + \cos(t)}.$$

Or $t\mapsto \frac{2}{1+\cos(t)}$ est continue sur le segment $]0;\pi/2]$, prolongeable par continuité en 0, donc intégrable.

Conclusion. D'après notre théorème et la question 2.2., on a :

$$\sum_{n=0}^{\infty} u_n = \lim_{n \to +\infty} \sum_{k=0}^{n} u_k = \lim_{n \to +\infty} \int_0^{\pi/2} V_n(t) dt = \int_0^{\pi/2} V(t) dt = 1.$$

EXERCICE 3

$$\mathbf{1.} \ F = \begin{pmatrix} 1 & \cdots & & & 1 \\ & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ & \vdots & \ddots & & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix} \ \text{et} \ G = \begin{pmatrix} 0 & 1 & \cdots & & 1 \\ 1 & 0 & & \cdots & 0 \\ \vdots & \vdots & & & \vdots \\ & & & & 1 \\ 1 & 0 & \cdots & & 0 \end{pmatrix}$$

- **2.** F et G sont des matrices symétriques réelles de E_n , donc F et G sont diagonalisables. Donc f et g sont diagonalisables.
- **3.1.** $\operatorname{Im}(g) = \operatorname{Vect}(e_2 + e_3 + \dots + e_n, e_1)$. Donc la famille $(e_1, e_2 + e_3 + \dots + e_n)$ est une famille génératrice de $\operatorname{Im}(g)$.

De plus les deux vecteurs de cette famille ne sont pas colinéaires donc forment une famille libre.

Ainsi $\mathcal{B}_1 = (e_1, e_2 + e_3 + \dots + e_n)$ est une base de Im(g).

Alors rg(g) = 2.

Et $\forall i \in [3, n]$, $e_2 - e_i \in \text{Ker}(g)$. Donc la famille $(e_2 - e_i)_{3 \leq i \leq n}$ est une famille échelonnée de vecteurs de Ker(g) donc une famille libre de Ker(g).

Et d'après le théorème du rang dim $\operatorname{Ker}(g) = n - 2$. La famille $(e_2 - e_i)_{3 \leq i \leq n}$ est composée de n - 2 vecteurs.

Donc \mathcal{B}_2 est une base de Ker(g).

3.2. Comme la matrice g dans la base canonique qui est une base orthonormée est symétrique, donc g est un endomorphisme symétrique.

Soit $x \in \text{Ker}(g)$ et $y \in \text{Im}(g)$. Alors il existe un vecteur z de E_n tel que y = g(z). Notons \langle , \rangle le produit scalaire canonique.

Alors $\langle x, y \rangle = \langle x, g(z) \rangle = \langle g(x), y \rangle$ car g est un endomorphisme symétrique.

Or $x \in \text{Ker}(g)$. Donc $\langle x, y \rangle = 0$.

Ainsi les espaces vectoriels Ker(g) et Im(g) sont orthogonaux.

Or d'après le théorème du rang, $\dim \operatorname{Ker}(g) + \dim \operatorname{Im}(g) = \dim E_n$.

Donc $\operatorname{Im}(g)$ et $\operatorname{Ker}(g)$ sont supplémentaires orthogonaux dans E_n .

3.3. 0 est une valeur propre de g et la dimension du sous-espace propre associé est n-2 c'est-à-dire la dimension de $\mathrm{Ker}(g)$.

Or g est diagonalisable. Donc g admet deux autres valeurs propres non nulles λ_1 et λ_2 .

Or tr(g) = tr(G) = 0. Alors $\lambda_1 + \lambda_2 = 0$.

Ainsi $\mathbf{Sp}(g) = \{0, \lambda_1, \lambda_2\}$ et $\lambda_1 \lambda_2 \neq 0$ et $\lambda_1 + \lambda_2 = 0$.

3.4.1.(i) \diamond Soit $y \in \text{Im}(g)$. Alors $g(y) \in \text{Im}(g)$. Donc Im(g) est stable par g.

 \diamond Soit $x \in \text{Ker}(g)$. Alors g(x) = 0 donc $g(x) \in \text{Ker}(g)$. Donc Ker(g) est stable par g.

3.4.1.(ii) Rappelons que $g(e_1) = \sum_{i=2}^{n} e_i$ et $g\left(\sum_{i=2}^{n} e_i\right) = (n-1)e_1$.

Donc $H = \begin{pmatrix} 0 & n-1 \\ 1 & 0 \end{pmatrix}$.

3.4.1.(iii) Le polynôme caract<u>éristique de h</u> est $\chi_h(X) = X^2 - (n-1)$.

Donc $\mathbf{Sp}(h) = \{-\sqrt{n-1}, \sqrt{n-1}\}.$

Et comme $-\sqrt{n-1} \neq \sqrt{n-1}$ (n > 1), alors les sous-espaces propres de h sont de dimension 1.

Remarquons que $H - \sqrt{n-1}I_2 = \begin{pmatrix} -\sqrt{n-1} & n-1 \\ 1 & -\sqrt{n-1} \end{pmatrix}$. Donc $\begin{pmatrix} \sqrt{n-1} \\ 1 \end{pmatrix}$ est un élément de $\operatorname{Ker}(H - \sqrt{n-1}I_2)$.

De même $H + \sqrt{n-1}I_2 = \begin{pmatrix} \sqrt{n-1} & n-1 \\ 1 & \sqrt{n-1} \end{pmatrix}$. Donc $\begin{pmatrix} -\sqrt{n-1} \\ 1 \end{pmatrix}$ est un élément de $\operatorname{Ker}(H + 1)$

4

$$\sqrt{n-1}I_2$$
).
Ainsi $E_h(-\sqrt{n-1}) = \text{Vect}(\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i)$ et $E_h(\sqrt{n-1}) = \text{Vect}(-\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i)$

- **3.4.1.(iv)** Les valeurs propres de h sont aussi des valeurs propres de g. Donc $\lambda_1 = \sqrt{n-1}$ et $\lambda_2 = \sqrt{n-1}$ $-\sqrt{n-1}$.
 - **3.4.2.(i)** \diamond Soit λ une valeur propre de g et x un vecteur propre associé.

Alors
$$g(x) = \lambda x$$
.

Donc
$$g^2(x) = g(\lambda x) = \lambda g(x) = \lambda^2 x$$
.

Or x est non nul, donc λ^2 est une valeur propre de g^2 .

Donc
$$\{0, \lambda_1^2, \lambda_2\} \subset \mathbf{Sp}(g^2)$$

 \diamond Et tout vecteur propre de λ pour g est aussi un vecteur propre de λ^2 pour g^2 .

Donc
$$E_g(0) \subset E_{g^2}(0)$$
, $E_g(\lambda_1) \subset E_{g^2}(\lambda_1^2)$ et $E_g(\lambda_2) \subset E_{g^2}(\lambda_2^2)$.

Or
$$g$$
 est diagonalisable. Donc $E_q(0) \oplus E_q(\lambda_1) \oplus E_q(\lambda_2) = E_n$.

Alors
$$E_{g^2}(0) + E_{g^2}(\lambda_1^2) + E_{g^2}(\lambda_2^2) = E_n$$
. Donc $\mathbf{Sp}(g^2) \subset \{0, \lambda_1^2, \lambda_2^2\}$.

Ainsi **Sp**
$$(g^2) = \{0, \lambda_1^2, \lambda_2^2\}.$$

- **3.4.2.(ii)** La matrice de g^2 dans la base \mathscr{B} est $G^2 = \begin{pmatrix} 0 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 0 & 1 & \cdots & 1 \end{pmatrix}$.
- **3.4.2.(iii)** Comme $E_g(\lambda_1) \oplus E_g(\lambda_2) = E_{g^2}(\lambda_1^2) + E_{g^2}(\lambda_2^2)$, donc dim $(E_{g^2}(\lambda_1^2) + E_{g^2}(\lambda_2^2)) = 2$. En regardant la trace de g^2 indépendante de la base choisie : $2(n-1) = \lambda_1^2 + \lambda_2^2$.
- **3.4.2.(iv)** Rappelons que $\lambda_1 + \lambda_2 = 0$ et $\lambda_1 > 0$. D'après la question précédente, $2(n-1) = \lambda_1^2 + \lambda_2^2$. Donc $\lambda_1^2 + (-\lambda_1)^2 = 2(n-1)$ ou encore $\lambda_1^2 = n-1$. Ainsi $\lambda_1 = \sqrt{n-1}$ et $\lambda_2 = -\sqrt{n-1}$.
 - **3.5.** D'après la question,

$$E_h\left(-\sqrt{n-1}\right) = \operatorname{Vect}\left(\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i\right) \text{ et } E_h\left(\sqrt{n-1}\right) = \operatorname{Vect}\left(-\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i\right)$$

Or les sous-espaces propres de g associés aux valeurs propres $-\sqrt{n-1}$ et $\sqrt{n-1}$ sont de dimension 1 et contiennent ceux de h associés aux mêmes valeurs propres.

Donc
$$E_g\left(-\sqrt{n-1}\right) = \operatorname{Vect}\left(\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i\right)$$
 et $E_g\left(\sqrt{n-1}\right) = \operatorname{Vect}\left(-\sqrt{n-1}\ e_1 + \sum_{i=2}^n e_i\right)$.

Rappelons qu'une base $\underline{\operatorname{de}} \ker(g)$ es

Rappelons qu'une base de
$$\ker(g)$$
 est \mathscr{B}_1 .

Donc en posant $P = \begin{pmatrix} -\sqrt{n-1} & \sqrt{n-1} & 0 & \cdots & & & 0 \\ & 1 & 1 & 1 & \cdots & & & 1 \\ & \vdots & \vdots & -1 & 0 & \cdots & & 0 \\ & & 0 & \ddots & \ddots & & \vdots \\ & & \vdots & \ddots & & & 0 \\ & & & \vdots & \ddots & & & 0 \\ & & & 1 & 1 & 0 & \cdots & & 0 & -1 \end{pmatrix}, P^{-1}GP = \operatorname{diag}(\lambda_1, \lambda_2, 0, \cdots, 0).$

- **3.6.** Id_{E_n} est diagonalisable dans toutes les bases de E_n . Donc la matrice de $f=g+\mathrm{Id}_{E_n}$ est diagonale dans une base qui diagonalise g ou encore $F = G + I_n$. Ainsi $P^{-1}FP$ est diagonale.
 - **4.** Posons $Y = P^{-1}X$. Alors par linéarité de $X \longmapsto P^{-1}X$, $Y' = P^{-1}X'$. Donc l'équation différentielle, $\mathscr{S}: X'(t) = FX(t) + tU$ s'écrit $Y'(t) = P^{-1}FPY(t) + tP^{-1}U$

ou encore
$$Y'(t) = DY(t) + t \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 où $D = \operatorname{diag}(\lambda_1 + 1, \lambda_2 + 1, 1, \dots, 1)$.

Alors en notant y_i les fonctions coordonnées de Y,

$$\mathscr{S} \Longleftrightarrow \begin{cases} y_1'(t) &= \left(1 + \sqrt{n-1}\right) y_1(t) + t \quad (\mathscr{S}_1) \\ y_2'(t) &= \left(1 - \sqrt{n-1}\right) y_2(t) \quad (\mathscr{S}_2) \\ \forall i \in [3, n], \ y_i'(t) &= y_i(t) \quad (\mathscr{S}_i) \end{cases}$$

Donc pour tout entier i de [3, n], y_i est une solution de \mathcal{S}_i si et seulement s'il existe une constante c_i telle que $\forall t \in \mathbb{R}, y_i(t) = c_i e^t$.

Et y_2 est une solution de \mathscr{S}_2 si et seulement s'il existe une constante c_2 telle que $\forall t \in \mathbb{R}, y_2(t) =$ $c_2 e^{(1-\sqrt{n-1})t}$.

Cherchons une solution particulière de \mathcal{S}_1 polynomiale de degré 1 de l'équation $y'_1(t) = (1 +$ $\sqrt{n-1}y_1(t) + t$, c'est-à-dire de la forme at + b.

Alors
$$\forall t \in \mathbb{R}, \ a = (1 + \sqrt{n-1})(at+b) + t$$
. Donc $a = \frac{-1}{1+\sqrt{n-1}}$ et $b = \frac{-1}{(1+\sqrt{n-1})^2}$.

Alors $\forall t \in \mathbb{R}$, $a = (1 + \sqrt{n-1})(at+b) + t$. Donc $a = \frac{-1}{1+\sqrt{n-1}}$ et $b = \frac{-1}{(1+\sqrt{n-1})^2}$. Par ailleurs les solutions de l'équation homogène sont les fonctions $t \longmapsto c_1 e^{(1+\sqrt{n-1})t}$.

Donc les solutions de \mathcal{S}_1 sont exactement les fonctions

$$t \longmapsto \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1)+c_1e^{(1+\sqrt{n-1})t} \text{ où } c_1 \in \mathbb{R}.$$

Ainsi
$$Y(t) = \begin{pmatrix} \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) + c_1e^{(1+\sqrt{n-1})t} \\ c_2e^{(1-\sqrt{n-1})t} \\ c_3e^t \\ \vdots \\ c_ne^t \end{pmatrix}.$$

Et les solutions de ${\mathscr S}$ sont les fonctions

$$X(t) = PY(t) = \begin{pmatrix} \frac{\sqrt{n-1}}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) - \sqrt{n-1} & c_1e^{(1+\sqrt{n-1})t} - \sqrt{n-1} & c_2e^{(1-\sqrt{n-1})t} \\ \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) + c_1e^{(1+\sqrt{n-1})t} + c_2e^{(1-\sqrt{n-1})t} + \sum_{i=3}^n c_ie^t \\ \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) + c_1e^{(1+\sqrt{n-1})t} + c_2e^{(1-\sqrt{n-1})t} + c_3e^t \\ \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) + c_1e^{(1+\sqrt{n-1})t} + c_2e^{(1-\sqrt{n-1})t} + c_4e^t \\ \vdots \\ \frac{-1}{(1+\sqrt{n-1})^2}((1+\sqrt{n-1})t+1) + c_1e^{(1+\sqrt{n-1})t} + c_2e^{(1-\sqrt{n-1})t} + c_ne^t \end{pmatrix}$$

EXERCICE 4

1.1. La fonction $t \mapsto \left(\frac{\sin(t)}{t}\right)^2$ est continue sur $]0, +\infty[$.

Et
$$\lim_{t\to 0} \frac{\sin(t)}{t} = 1$$
. Donc $\lim_{t\to 0} \left(\frac{\sin(t)}{t}\right)^2 = 1$.

Et $\lim_{t\to 0} \frac{\sin(t)}{t} = 1$. Donc $\lim_{t\to 0} \left(\frac{\sin(t)}{t}\right)^2 = 1$. Ainsi la fonction $t \longmapsto \left(\frac{\sin(t)}{t}\right)^2$ est prolongeable par continuité sur \mathbb{R}_+

1.2. La fonction $t \mapsto \left(\frac{\sin(t)}{t}\right)^2$ est continue et positive sur $[1, +\infty[$. De plus $0 \leqslant \left(\frac{\sin(t)}{t}\right)^2 \leqslant \frac{1}{t^2}$, et $\int_1^{+\infty} \frac{1}{t^2} \mathrm{d}t$ converge.

De plus
$$0 \leqslant \left(\frac{\sin(t)}{t}\right)^2 \leqslant \frac{1}{t^2}$$
, et $\int_1^{+\infty} \frac{1}{t^2} dt$ converge

Ainsi
$$\int_{1}^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt$$
 est convergente.

1.3. La fonction $t \mapsto \left(\frac{\sin(t)}{t}\right)^2$ est continue et positive sur $]0, +\infty[$.

Elle est prolongeable par continuité en 0, donc $\int_0^1 \left(\frac{\sin(t)}{t}\right)^2 dt$ converge.

D'après la question précédente, $\int_1^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt$ converge.

Ainsi $\int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt$ converge.

Ainsi $t \longmapsto \left(\frac{\sin(t)}{t}\right)^2$ est intégrable sur \mathbb{R}_+^* .

1.4. • Pour tout réel x positif, la fonction $t \mapsto \left(\frac{\sin(t)}{t}\right)^2 e^{-xt}$ est continue et positive sur $]0, +\infty[$.

• Pour tout réel t strictement positif, la fonction $x \mapsto \left(\frac{\sin(t)}{t}\right)^2 e^{-xt}$ est continue sur $[0, +\infty[$.

• Et $\forall t \in]0, +\infty[, 0 \leqslant \left(\frac{\sin(t)}{t}\right)^2 e^{-xt} \leqslant \left(\frac{\sin(t)}{t}\right)^2.$

Or d'après la question précédente, $t \longmapsto \left(\frac{\sin(t)}{t}\right)^2$ est intégrable sur \mathbb{R}_+^* .

Ainsi f est définie et continue sur \mathbb{R}_+ .

2.1.1. Soit t un réel positif.

La fonction $\varphi: u \longmapsto \sin(u)$ est de classe \mathscr{C}^1 sur [0,t] et $\forall u \in [0,t], |\varphi'(u)| \leq 1$.

Donc d'après l'inégalité des accroissements finis, $|\varphi(t) - \varphi(0)| \leq |t - 0|$.

Ainsi $\forall t \ge 0, \ 0 \le |\sin(t)| \le t$.

2.1.2. Soit t un réel strictement positif.

D'après la question précédente et la croissance de la fonction carrée, $\sin^2(t) \leqslant t^2$.

Donc $0 \leqslant \frac{\sin^2(t)}{t} \leqslant t \operatorname{car}(t > 0)$.

Par décroissance de la fonction $u \mapsto e^{-u}$, comme $at \leqslant xt$, $e^{-xt} \leqslant e^{-at}$. Ainsi par produit des inégalités positives, $\forall t > 0$, $0 \leqslant \frac{\sin^2(t)}{t}e^{-xt} \leqslant te^{-at}$.

Remarque : On aurait pu aussi obtenir l'inégalité suivante $\forall t>0,\ 0\leqslant \frac{\sin^2(t)}{t}e^{-xt}\leqslant e^{-at}$ plus agréable à manipuler ensuite

2.1.3. Soit t un réel strictement positif.

Rappelons que $\sin^2(t) \leq 1$ et que $e^{-xt} \leq e^{-at}$.

Ainsi par produit des inégalités positives, $\forall t > 0, \ 0 \leq \sin^2(t)e^{-xt} \leq e^{-at}$.

2.2. Soit [a, b] un segment de \mathbb{R}_+^* .

• Pour tout x > 0, $t \mapsto \left(\frac{\sin(t)}{t}\right)^2 e^{-xt}$ est continue et intégrable sur $]0, +\infty[$ (1.4.).

• Pour tout t > 0, $x \longmapsto \left(\frac{\sin(t)}{t}\right)^2 e^{-xt}$ est de classe \mathscr{C}^2 sur $]0, +\infty[$.

• Pour tout x > 0, $t \mapsto -\frac{\sin^2(t)}{t}e^{-xt}$ et $t \mapsto \sin^2(t)e^{-xt}$ sont continues sur $]0, +\infty[$.

 $\bullet \ \forall (x,t) \in [a,b] \times]0, +\infty[, \ \left| -\tfrac{\sin^2(t)}{t} e^{-xt} \right| \leqslant t e^{-at}.$ Et $t \longmapsto te^{-at}$ est continue sur $[0, +\infty[$ et indépendante de x. Comme $te^{-at} = o(\frac{1}{t^2})$ et que $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$, donc $t \longmapsto te^{-at}$ est intégrable sur $[0, +\infty[$.

• $\forall (x,t) \in [a,b] \times [0,+\infty[, |\sin^2(t)e^{-xt}| \leq e^{-at}]$ Et $t \mapsto e^{-at}$ est continue intégrable sur $]0, +\infty[$ et indépendante de x.

Conclusion. Par théorème, f est de classe \mathscr{C}^2 sur [a,b] pour tout segment [a,b] de \mathbb{R}_+^* donc sur \mathbb{R}_{+}^{*} , et

$$\forall x \in \mathbb{R}_+^*, \quad f''(x) = \int_0^{+\infty} \sin^2(t) e^{-xt} dt$$

3.1. Soit θ un réel. Soit x et t des réels strictement positifs.

Remarquons que $\theta t \in \mathbb{R}$. Donc $|e^{i\theta t}| = 1$.

Or
$$|e^{(i\theta - x)t}| = |e^{i\theta t}e^{-xt}| = |e^{i\theta t}| |e^{-xt}| = e^{-xt} \operatorname{car} e^{-xt} \in \mathbb{R}_+.$$

Ainsi $\forall \theta \in \mathbb{R}, \ \forall x > 0, \ |e^{(i\theta - x)t}| = e^{-xt}$.

3.2. Soit θ un réel. Soit x un réel strictement positif.

Comme x > 0, $\lim_{t \to +\infty} e^{-xt} = 0$.

Donc d'après la question précédente, $\forall \theta \in \mathbb{R}, \ \forall x > 0, \lim_{t \to +\infty} |e^{(i\theta - x)t}| = 0.$

3.3. Soit x un réel strictement positif.

Remarquons que $\forall t \in]0, +\infty[$, $\sin^2(t) = \left(\frac{e^{it} - e^{-it}}{2i}\right)^2 = -\frac{1}{4}\left(e^{2it} + e^{-2it} - 2\right)$.

Donc
$$f''(x) = -\frac{1}{4} \int_0^{+\infty} \left(e^{(2i-x)t} + e^{(-2i-x)t} - 2e^{-xt} \right) dt$$

$$= -\frac{1}{4} \left[\frac{e^{(2i-x)t}}{2i-x} + \frac{e^{(-2i-x)t}}{-2i-x} + 2\frac{e^{-xt}}{x} \right]_0^{+\infty}$$

$$= -\frac{1}{4} \left(\frac{-1}{2i-x} + \frac{-1}{-2i-x} + 2\frac{-1}{x} \right) \quad \text{d'après la question précédente}$$

$$= \frac{1}{2x} + \frac{1}{4} \frac{-2i-x+2i-x}{(2i-x)(-2i-x)}$$

Ainsi $\forall x \in \mathbb{R}_+^*, \ f''(x) = \frac{1}{2x} - \frac{x}{2(x^2+4)}.$

4.1. Soit x un réel strictement positif.

 $\forall t \in]0, +\infty[, \ 0 \leqslant \left(\frac{\sin(t)}{t}\right)^2 e^{-xt} \leqslant e^{-xt}.$

Or $t \mapsto e^{-xt}$ est intégrable sur $]0, +\infty[$, et $\int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$.

Donc $0 \le f(x) \le \frac{1}{x}$. Ainsi par encadrement $\lim_{x \to +\infty} f(x) = 0$.

4.2. Soit x un réel strictement positif.

 $\forall t \in]0, +\infty[, \ 0 \leqslant \frac{\sin^2(t)}{t}e^{-xt} \leqslant e^{-xt}.$

Or $t \longmapsto e^{-xt}$ est intégrable sur $]0, +\infty[$, et $\int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$

Donc $0 \le -f'(x) \le \frac{1}{x}$. Ainsi par encadrement, $\lim_{x \to +\infty} f'(x) = 0$.

4.3. G est dérivable sur \mathbb{R} .

Et $\forall t \in \mathbb{R}$, $G'(t) = \ln(t^2 + 4) + \frac{2t^2}{t^2 + 4} - 2 + 2\frac{1}{1 + \left(\frac{t}{2}\right)^2} = \ln(t^2 + 4) + 2\frac{t^2 + 4}{t^2 + 4} - 2$.

Donc $\forall t \in \mathbb{R}, G'(t) = \ln(t^2 + 4).$

4.4. D'après la question 3.3., $\forall x \in \mathbb{R}_+^*$, $f''(x) = \frac{1}{2x} - \frac{x}{2(x^2+4)}$.

En intégrant, il existe une constante C telle que $\forall x \in \mathbb{R}_+^*$, $f'(x) = \frac{1}{2}\ln(x) - \frac{1}{4}\ln(x^2 + 4) + C$.

Or d'après la question 4.2., $\lim_{x\to+\infty} f'(x) = 0$. Et $f'(x) = \frac{1}{4} \ln\left(\frac{x^2}{x^2+4}\right) + C$. Donc C = 0.

En intégrant, il existe une constante c telle que $\forall x \in \mathbb{R}_+^*$, $f(x) = \frac{1}{2}(x\ln(x) - x) - \frac{1}{4}G(x) + c$. Donc $\forall x \in]0, +\infty[$,

$$f(x) = \frac{1}{4} \left(2x \ln(x) - 2x - x \ln(x^2 + 4) + 2x - 4 \arctan\left(\frac{x}{2}\right) \right) + c$$

$$= \frac{1}{4} \left(x \ln\left(\frac{x^2}{x^2 + 4}\right) - 4 \arctan\left(\frac{x}{2}\right) \right) + c$$

$$= \frac{1}{4} \left(x \ln\left(1 - \frac{4}{x^2 + 4}\right) - 4 \arctan\left(\frac{x}{2}\right) \right) + c$$

Alors $\lim_{x \to +\infty} f(x) = -\frac{\pi}{2} \operatorname{car} x \ln\left(1 - \frac{4}{x^2 + 4}\right) \underset{x \to +\infty}{\sim} -\frac{4x}{x^2 + 4}$. Or d'après la question 4.1., $\lim_{x \to +\infty} f(x) = 0$. Donc $c = \frac{\pi}{2}$.

Conclusion. $\forall x \in]0, +\infty[, f(x)] = \frac{1}{4} \left(2x \ln(x) - x \ln(x^2 + 4) - 4 \arctan\left(\frac{x}{2}\right)\right) + \frac{\pi}{2}.$

5. On a
$$f(0) = \int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt$$
.

Et par continuité de f en 0 (montrée en 1.4.),

$$\begin{split} f(0) &= \lim_{x \to 0} f(x) \\ &= \lim_{x \to 0} \frac{1}{4} \left(x \ln \left(\frac{x^2}{x^2 + 4} \right) - 4 \arctan \left(\frac{x}{2} \right) \right) + \frac{\pi}{2} \\ &= \frac{\pi}{2} \quad \text{(croissance comparée)}. \end{split}$$

Conclusion.
$$\int_0^{+\infty} \left(\frac{\sin(t)}{t}\right)^2 dt = \frac{\pi}{2}.$$