E3A 2015 - PC - Mathématiques 1

Exercice 1

1. (a) On a
$$A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Son polynôme caractéristique est $X^2 - 1 = (X - 1)(X + 1)$.

Donc A_2 admet deux valeurs propres distinctes, alors qu'elle possède également deux colonnes donc A_2 est diagonalisable.

Et comme 0 n'est pas valeur propre de A_2 , A_2 est inversible.

(b) On a
$$A_3 = \begin{pmatrix} 0 & 1 & 0 \\ 2 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$
.

Son polynôme caractéristique est $X^3 - 4X = X(X-2)(X+2)$.

Donc A_3 admet trois valeurs propres distinctes, alors qu'elle possède également trois colonnes donc A_3 est diagonalisable.

Et comme 0 est valeur propre de A_3 , A_3 n'est pas inversible.

2. (a) Les résultats numériques donnent
$$A^2 = \begin{pmatrix} 3 & 0 & 2 & 0 \\ 0 & 7 & 0 & 6 \\ 6 & 0 & 7 & 0 \\ 0 & 2 & 0 & 3 \end{pmatrix}$$

et
$$Q(A) = (A^2 - I_4)(A^4 - 9I_4) = 0$$
 (matrice nulle)

Notons qu'il est n'est pas connu officiellement « qu'il faut remplacer » les nombres a de Q par aI_4 dans Q(A)...

(b) Il semblerait qu'il soit attendu l'usage du théorème concernant un polynôme annulateur scindé à racines simples...

On va donc faire autrement en calculant le polynôme caractéristique de A. Pour tout $\lambda \in \mathbb{R}$,

$$\chi_A(\lambda) = \det(\lambda I_4 - A) = \det\begin{pmatrix} \lambda & -1 & 0 & 0 \\ -3 & \lambda & -2 & 0 \\ 0 & -2 & \lambda & -3 \\ 0 & 0 & -1 & \lambda \end{pmatrix}$$

On fait un développement par rapport à la première ligne :

$$\chi_A(\lambda) = \lambda \det \begin{pmatrix} \lambda & -2 & 0 \\ -2 & \lambda & -3 \\ 0 & -1 & \lambda \end{pmatrix} - (-1) \det \begin{pmatrix} -3 & -2 & 0 \\ 0 & \lambda & -3 \\ 0 & -1 & \lambda \end{pmatrix} = \lambda(\lambda^3 - 7\lambda) - 3(\lambda^2 - 3)$$

$$\chi_A(\lambda) = \lambda^4 - 10\lambda^2 + 9 = (\lambda^2 - 1)(\lambda^2 - 9) = (\lambda - 1)(\lambda + 1)(\lambda - 3)(\lambda + 3) = Q(\lambda)$$

 χ_A est scindé à racines simples donc A est diagonalisable.

(c) Avec χ_A , nous pouvons affirmer que les valeurs propres de A sont 1, -1, 3, -3.

La matrice D recherchée (vérifiant les conditions d'inégalité demandées) est donc D = diag(3, 1, -1, -3). Pour obtenir une matrice Δ , il suffit de chercher des colonnes propres associées à A et d'être attentif à l'ordre d'écriture dans Δ .

Or les calculs donnent :

$$E_3(A) = \operatorname{vect}\begin{pmatrix} 1\\3\\3\\1 \end{pmatrix} \qquad E_1(A) = \operatorname{vect}\begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} \qquad E_{-1}(A) = \operatorname{vect}\begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix} \qquad E_{-3}(A) = \operatorname{vect}\begin{pmatrix} 1\\-3\\3\\-1 \end{pmatrix}$$

On peut donc choisir
$$\Delta = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & -1 & -3 \\ 3 & -1 & -1 & 3 \\ 1 & -1 & 1 & -1 \end{pmatrix}$$

- (d) Φ est bien une application de $\mathcal{M}_4(\mathbb{R})$, à valeurs dans $\mathcal{M}_4(\mathbb{R})$.
 - $\forall M, N \in \mathcal{M}_4(\mathbb{R}) \text{ et } \lambda \in \mathbb{R},$

$$\Phi(\lambda M+N)=\Delta(\lambda M+N)\Delta^{-1}=\lambda\Delta M\Delta^{-1}+\Delta N\Delta^{-1}=\lambda\Phi(M)+\Phi(N),$$

par linéarité du produit matriciel.

Enfin, en notant $\Psi: N \mapsto \Delta^{-1}N\Delta$, on a pour tout $M \in \mathcal{M}_4(\mathbb{R})$,

$$\Phi(\Psi(M)) = \Delta(\Delta^{-1}M\Delta)\Delta^{-1} = M$$
 et $\Psi(\Phi(M)) = \Delta^{-1}(\Delta M\Delta^{-1})\Delta = M$

Donc Φ est un endomorphisme de $\mathcal{M}_4(\mathbb{R})$, bijectif de réciproque Ψ .

(e) Soit
$$N = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix}$$
,

$$ND = DN \iff \begin{pmatrix} 3a & b & -c & -3d \\ 3e & f & -g & -3h \\ 3i & j & -k & -3l \\ 3m & n & -o & -3p \end{pmatrix} = \begin{pmatrix} 3a & 3b & 3c & 3d \\ e & f & g & h \\ -i & -j & -k & -l \\ -3m & -3n & -3o & -3p \end{pmatrix}$$

$$\Longleftrightarrow b=c=d=e=g=h=i=j=l=m=n=o=0$$

Et donc N commute avec D si et seulement si N est diagonale

(f) $M \in \mathcal{C}_A \Longleftrightarrow MA = AM \Longleftrightarrow M\Delta D\Delta^{-1} = \Delta D\Delta^{-1}M \Longleftrightarrow \Phi(M)D = D\Phi(M)$

Donc d'après la question précédente, ceci est équivalent au fait que : $\Phi(M)$ est une matrice diagonale.

Ainsi, $M \in \mathcal{C}_A \iff \Phi(M) \in D_4 \iff M \in \Phi^{-1}(D_4)$ où $D_4 = \text{vect}(E_{1,1}, E_{2,2}, E_{3,3}, E_{4,4})$ est l'espace vectoriel des matrices diagonales d'ordre 4.

C'est un espace vectoriel de dimension 4.

Par conséquent, comme Φ est bijective, $\mathcal{C}_A = \Phi^{-1}(D_4)$ est un espace vectoriel de dimension 4.

(g) Nous savons que dim(\mathcal{C}_A) = 4, et que I_4 , A, A^2 , $A^3 \in \mathcal{C}_4$.

En effet, toute matrice A^p commute avec $A: A^pA = A^{p+1} = AA^p$.

Il suffit donc de montrer que cette famille est libre.

Considérons $\lambda_0, \lambda_1, \lambda_2, \lambda_4$ tels que $\lambda_0 I_4 + \lambda_1 A + \lambda_2 A^2 + \lambda_3 A^3 = 0$.

Notons X_i , vecteur propre de A associé à la valeur propre μ_i , alors (récurrence) : pour $p \in \mathbb{N}$, $A^p X_i = \mu_i^p X_i$.

On a donc en prenant les vecteurs propres (non nuls) associés aux 4 valeurs propres distinctes de A:

$$\begin{cases} \lambda_0 & +3\lambda_1 & +9\lambda_2 & +27\lambda_3 & = 0\\ \lambda_0 & +\lambda_1 & +\lambda_2 & +\lambda_3 & = 0\\ \lambda_0 & -\lambda_1 & +\lambda_2 & -\lambda_3 & = 0\\ \lambda_0 & -3\lambda_1 & +9\lambda_2 & -27\lambda_3 & = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 3 & 3^2 & 3^3\\ 1 & 1 & 1^2 & 1^3\\ 1 & -1 & (-1)^2 & (-1)^3\\ 1 & -3 & (-3)^2 & (-3)^3 \end{pmatrix} \times \begin{pmatrix} \lambda_0\\ \lambda_1\\ \lambda_2\\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$

Or la dernière matrice carrée écrite est une matrice de Vandermonde inversible (de déterminant $(3-1)(3+1)(3+3)(1+1)(1+3)(-1+3) \neq 0$),

donc la matrice colonne est nulle, donc $\lambda_0 = \lambda_1 = \lambda_2 = \lambda_3 = 0$.

Ainsi la famille (I_4, A, A^2, A^3) est une famille libre. Elle est aussi une base de \mathcal{C}_4

3. (a) La dérivation et le produit d'un polynôme par un autre est linéaire. Donc $\underline{\varphi}$ est linéaire. Soit $h \in [1, n-1]$.

$$\underline{\varphi}(X^h) = (n-1)X^{h+1} + (1-X^2)hX^{h-1} = hX^{h-1} + (n-1-h)X^{h+1}$$

Pour h = 0, la formule reste vraie : $\varphi(X^0) = (n-1)X$.

On a donc $\forall h < n-1, \varphi(X^h)$ est un polynôme de degré $h+1 \leqslant n-1$ donc de E.

Et pour h=n-1: $\varphi(X^{n-1})=(n-1)X^{n-2}+(n-1-(n-1))X^n=(n-1)X^{n-2}\in E$. Ainsi φ est un endomorphisme de E

- (b) Pour écrire la matrice B de φ dans la base \mathcal{B} , il faut regarder l'image d'une base, or on a vu que $\varphi(X^j) = jX^{j-1} + (n-1-j)X^{j+1}$, ce qui signifie que les coefficients de B sont nuls, sauf : $b_{j+1,j} = n-1-j$ et $b_{j-1,j} = j-1$. On retrouve la définition des coefficients de A_n . Donc $M_{\mathcal{B}}(\varphi) = A_n$
- (c) $P'_h = h(X-1)^{h-1}(X+1)^{n-1-h} + (n-1-h)(X-1)^h(X+1)^{n-2-h}$. Donc, puisque $(1-X^2) = -(X-1)(X+1)$, $\underline{\varphi(P_h)} = [(n-1)X - h(X+1) - (n-1-h)(X-1)]P_h = (n-1-2h)P_h.$ Comme P_h est non nul (pour tout h), alors les valeurs propres de φ sont parmi les nombres $\{n-1-2h, h \in [\![0,n-1]\!]\}$.

Mais comme cet ensemble possède $n-1=\dim(E)$ nombres distincts, les valeurs propres de φ sont exactement les nombres de $\{n-1-2h, h \in [0, n-1]\}$

- (d) Ainsi, A_n d'ordre n admet n valeurs propres distinctes donc A_n est diagonalisable.
- (e) A_n est inversible si et seulement si 0 n'est pas valeur propre de A_n . Or 0 est valeur propre de A_n si et seulement si il existe $h \in \mathbb{N}$ tel que n-1-2h=0 donc si et seulement si n est impair.

Donc A_n est inversible si et seulement si n est pair

(f) A_n est diagonalisable, donc il existe Δ_n telle que $A_n = \Delta_n D_n \Delta_n^{-1}$, où $D_n = diag(n-1,n-3,n-5,\ldots,-n+1,-n-1)$ Notons $U_n = \Delta_n \overline{D_n} \Delta_n^{-1}$ avec $\overline{D_n} = diag(\sqrt[3]{n-1},\sqrt[3]{n-3},\ldots,\sqrt[3]{-n-1})$.

Alors $U_n^3 = \Delta_n \overline{D_n} \Delta_n^{-1} \Delta_n \overline{D_n} \Delta_n^{-1} \Delta_n \overline{D_n} \Delta_n^{-1} = \Delta_n (\overline{D_n})^3 \Delta_n^{-1} = \Delta_n D_n \Delta_n^{-1} = A_n$.

Donc il existe $U_n \in \mathcal{M}_n(\mathbb{R})$ tel que $(U_n)^3 = A_n$

Exercice 2

1. (a) La fonction $t\mapsto \tan t$ est continue, strictement croissante de $]-\frac{\pi}{2},\frac{\pi}{2}[$ sur $]-\infty,+\infty[$. Elle établit donc une bijection et admet ainsi une fonction réciproque, notée Arctan , donc définie de $]-\infty,+\infty[$ sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ également continue et strictement décroissante. En exploitant la dérivation de la composition, on a alors :

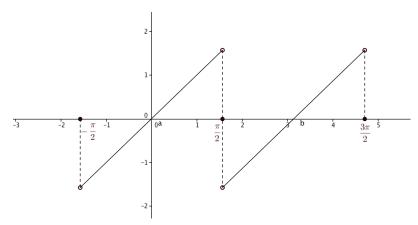
$$\forall x \in \mathbb{R} \quad \operatorname{Arctan}'(x) = \frac{1}{1+x^2}$$

Comme la fonction tan, Arctan est une fonction impaire,

donc si x > 0, Arctan (-x) = -Arctan (x). On va faire l'étude sur \mathbb{R}_+ . Par addition, la fonction $x \mapsto f(x) =$ Arctan (x) - x est de classe \mathcal{C}^1 ,

$$\forall x > 0, \quad f'(x) = \frac{1}{1+x^2} - 1 = \frac{-x^2}{1-x^2} \le 0$$

(b) Si $x \in]$ $-\frac{\pi}{2}, \frac{\pi}{2}[$, $g(x) = \operatorname{Arctan}(\operatorname{tan}(x)) = x$. Mais si $x \in]\frac{\pi}{2}, \frac{3\pi}{2}[$, alors $\tan x = \tan(x-\pi)$, avec $x-\pi \in]$ $-\frac{\pi}{2}, \frac{\pi}{2}[$, et dans ce cas, $g(x) = \operatorname{Arctan}(\tan(x)) = \operatorname{Arctan}(\tan(x-\pi)) = x - \pi$.



(c) ψ est l'addition de deux fonctions de classe \mathcal{C}^1 sur \mathbb{R}_+^* , elle est de classe \mathcal{C}^1 sur \mathbb{R}_+^* . Pour tout réel x > 0,

$$\psi'(x) = \frac{1}{1+x^2} + \frac{-\frac{1}{x^2}}{1+\frac{1}{x^2}} = 0$$

Donc ψ est constante sur \mathbb{R}_+^* .

En outre $\psi(1)=2$ Arctan $(1)=2\frac{\pi}{4}.$ Donc $\forall~x>0,$ Arctan (x)+Arctan $\frac{1}{x}=\frac{\pi}{2}$

(d) Connaissant, le DSE de la fraction rationnelle (limite de la série géométrique), on a :

$$\forall x \in]-1,1[, \frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}$$

En intégrant sur son domaine de convergence :

$$\forall x \in]-1,1[, \text{ Arctan } (x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$$

2. (a) La fonction Arctan admet un développement en série entière de rayon 1. La fonction $h: x \mapsto \frac{\operatorname{Arctan}(x)}{x}$ est continue en 0 (en effet : Arctan $(x) \sim x$).

On a donc pour tout
$$x \in]-1,1[, h(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n}.$$

En ce qui concerne la continuité en 1 et -1, on utilise la convergence uniforme sur [-1,1]d'une série de fonction continue.

Notons pour cela $h_n: x \mapsto \frac{1}{2n+1}(x^2)^n$.

Soit
$$x \in [-1, 1]$$
, alors

$$-h_n(x) > 0.$$

Soit
$$x \in [-1,1]$$
, alors
$$-h_n(x) > 0,$$

$$-\frac{h_{n+1}(x)}{h_n(x)} = \frac{2n}{2n+1}x^2 \le 1, \text{ donc } (h_n(x))_n \text{ est une suite décroissante.}$$

$$-\text{Enfin, } \lim_{n \to +\infty} h_n(x) = 0$$

- Enfin,
$$\lim_{n \to +\infty} h_n(x) = 0$$

On peut appliquer la majoration pour les séries alternées :

$$\forall \ x \in [-1, 1], \qquad \left| h(x) - \sum_{k=0}^{n} (-1)^k h_k(x) \right| = \left| \sum_{k=n+1}^{+\infty} (-1)^k h_k(x) \right| \leqslant h_{n+1}(x) = \frac{x^{2n+2}}{2n+3} \leqslant \frac{1}{2n+3}$$

La série de fonctions $\sum_{n} (-1)^n h_n$ converge donc uniformément vers h sur [-1,1]. En outre, h_n est continue, donc la somme de sa série est également continue. L'égalité reste vraie sur [-1,1].

Pour tout
$$x \in [-1, 1]$$
, $h(x) = \frac{\text{Arctan }(x)}{x} = \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{2n+1}$.

(b) De même, en raisonnant pour les séries entières et le disque de convergence, on peut conclure que h est de classe \mathcal{C}^{∞} sur]-1,1[

et
$$\forall x \in]-1,1[, \forall m \in \mathbb{N}, h^{(m)}(x) = \sum_{k=\lfloor \frac{m-1}{2} \rfloor}^{+\infty} (-1)^k \frac{(2k)!}{(2k+1)(2k-m)!} x^{2k-m-1}.$$

Pour l'extension sur \mathbb{R} , on utilisera le fait simple que $x \mapsto \frac{1}{x}$ et $x \mapsto \operatorname{Arctan}(x)$ sont de classe C^{∞} sur \mathbb{R}^* .

Par réunion : h est de classe \mathcal{C}^{∞} sur \mathbb{R}

3. (a) La fonction h est continue sur \mathbb{R} , puisqu'elle est de classe \mathcal{C}^{∞} .

On applique le théorème fondamental : h admet une primitive qui s'annule en 0 et qui est de classe C^1 sur \mathbb{R} .

C'est la fonction H, avec H' = h

(b) Par composition, la fonction G est également de classe C^1 sur \mathbb{R}_+^* . Et pour tout x > 0,

$$G'(x) = \frac{-1}{x^2}H'(\frac{1}{x}) = \frac{-1}{x^2}h(\frac{1}{x}) = \frac{-\arctan\frac{1}{x}}{x^2 \times \frac{1}{x}} = \frac{\arctan(x) + \frac{\pi}{2}}{x} = h(x) - \frac{\pi}{2x} = H'(x) - \frac{\pi}{2x}$$

En intégrant entre 1 et x, on a :

$$G(x) - G(1) = H(x) - H(1) - \frac{\pi}{2}\ln(x) + 0$$

Et comme G(1) = H(1), on a donc $\forall x > 0$, $H(x) = G(x) + \frac{\pi}{2} \ln x$

(c) La série de fonctions $\sum_{n\geqslant} (-1)^n h_n$ converge uniformément sur [-1,1], chaque h_n est continue, donc intégrable sur [0,x], avec $x\in[-1,1]$. On notera que $\int_0^x h_n(t)\mathrm{d}t = \frac{1}{(2n+1)^2}x^{2n+1}$.

On peut donc intégrer la série de fonctions ce qui conduit à ${\cal H}$:

$$\forall x \in [-1, 1], \quad H(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2} x^{2n+1}$$

On reconnait une série entière, on peut diviser par x $(H(x) \underset{0}{\sim} x)$, et donc

$$\forall x \in [-1, 1], \quad f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)^2} x^{2n}$$

Par ailleurs, par division, f est de classe C^{∞} sur \mathbb{R}_{+}^{*} , sur]-1,1[et \mathbb{R}_{-}^{*} . Par union (recollement), f est de classe C^{∞} sur \mathbb{R}

(d) Pour tout x > 0,

$$f\left(\frac{1}{x}\right) = xH\left(\frac{1}{x}\right) = xG(x) = xH(x) - \frac{\pi}{2}x\ln x = x^2f(x) - \frac{\pi}{2}x\ln x$$

4. (a) D'après la première question, pour tout $x \in \mathbb{R}$,

$$\left| \frac{\operatorname{Arctan}(tx)}{t(t^2 + 1)} \right| \le \frac{|tx|}{|t|(t^2 + 1)}$$

Or $m: t \mapsto \frac{|x|}{(t^2+1)}$ est intégrable sur \mathbb{R} (continue et $m(t) \underset{+\infty}{\sim} \frac{|x|}{t^2}$). Donc $\underline{\varphi}$ est bien définie sur \mathbb{R} . En outre, $\forall x \in \mathbb{R}, \ \varphi(-x) = -\varphi(x)$, car Arctan est impaire.

(b) Appliquons un théorème d'intégrale à paramètre. Notons $\overline{\varphi}: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}, (x,t) \mapsto \frac{\operatorname{Arctan}(xt)}{t(1+t^2)}$

— Soit
$$t \in \mathbb{R}_+$$
. L'application $x \mapsto \overline{\varphi}(x,t)$ est de classe C^1 sur \mathbb{R} .
 Et pour tout $t \in \mathbb{R}_+$, $x \in \mathbb{R}$, $\frac{\partial \overline{\varphi}}{\partial x}(x,t) = \frac{1}{(1+t^2)(1+(tx)^2)}$

— Soit $x \in \mathbb{R}$. L'application $t \mapsto \frac{1}{(1+t^2)(1+(tx)^2)}$ est continue par morceaux.

— Et pour tout
$$t \in \mathbb{R}_+, x \in \mathbb{R}, \left| \frac{\partial \overline{\varphi}}{\partial x}(x, t) \right| \leqslant \frac{1}{1 + t^2}.$$

Or $t \mapsto \frac{1}{1+t^2}$ est intégrable sur \mathbb{R} .

donc φ est de classe \mathcal{C}^1 sur \mathbb{R} et $\forall x \in \mathbb{R}, \varphi'(x) = \int_0^\infty \frac{1}{(1+t^2)(1+(xt)^2)} dt$

(c) — Si
$$x = 1$$
, $\varphi'(1) = \int_0^\infty \frac{1}{(1+t^2)^2} dt$.

Faisons le changement de variable donné par $[0, \frac{\pi}{2}[\to \mathbb{R}_+, \theta \mapsto \tan \theta = t]$

$$\varphi'(1) = \int_0^{\pi/2} \frac{1}{(1 + \tan^2 \theta)^2} (1 + \tan^2 \theta) d\theta = \int_0^{\pi/2} \cos^2 \theta d\theta = \int_0^{\pi/2} \frac{1}{2} (1 + \cos 2\theta) d\theta = \frac{1}{2} \left[\theta + \frac{1}{2} \sin 2\theta \right]_0^{\pi/2} = \frac{\pi}{4}$$

— Pour $x \neq 1$, on utilise l'égalité donnée dans l'énoncé (et vérifiée simplement) :

$$\varphi'(x) = \frac{1}{1 - x^2} \int_0^{+\infty} \frac{1}{1 + t^2} dt - \frac{x^2}{1 - x^2} \int_0^{+\infty} \frac{x}{1 + x^2 t^2} dt$$

Pour la seconde intégrale, on fait le changement de variable linéaire $u\mapsto \frac{u}{x}=t\ (x>0)$

$$\varphi'(x) = \frac{1}{1 - x^2} \left[\operatorname{Arctan} (t) \right]_0^{+\infty} - \frac{x}{1 - x^2} \int_0^{+\infty} \frac{1}{1 + u^2} du = \frac{1 - x}{1 - x^2} \frac{\pi}{2} = \frac{\pi}{2(1 + x)}$$

On remarque la continuité en $x \to 1$.

(d) On intègre:

$$\underline{\varphi(x)} = \varphi(0) + \int_0^x \varphi'(t) dt = \frac{\pi}{2} \ln(1+x)$$

(e) A partir de la définition de φ , faisons le changement $t = \tan \theta$ (comme en 4.c., x = 1). On a alors, puisque la dérivée de tan est $t \mapsto 1 + \tan^2(t) (> 0)$

$$\varphi(x) = \int_0^{\pi/2} \frac{\arctan(x \tan \theta)}{\tan \theta} d\theta = K(x)$$

Donc K est bien définie sur \mathbb{R} et $K(x) = \frac{\pi}{2} \ln(1+x)$.

Et donc en x=1,

$$K(1) = \int_0^{\pi/2} \frac{\arctan(\tan \theta)}{\tan \theta} d\theta = \int_0^{\pi/2} \frac{\theta \cos \theta}{\sin \theta} d\theta$$

Faisons alors une intégration par parties avec $u(\theta) = \theta$ et $v(\theta) = \ln(\sin \theta)$

Ce sont des fonctions de classe C^1 sur $]0, \frac{\pi}{2}[$ et $u'(\theta) = 1, v'(\theta) = \frac{\cos \theta}{\sin \theta}$. L'intégration par parties est permises, car le crochet $[u(\theta)v(\theta)]_0^{\pi/2} = \frac{\pi}{2}\ln 1 - 0$ converge. Donc

$$\frac{\pi}{2}\ln(2) = K(1) = -\int_0^{\pi/2} 1 \times \ln(\sin\theta) d\theta$$

Exercice 3

1. (a) $\mathcal{L}(E)$ est bien un espace vectoriel. L'application id est un élément de $\mathcal{S}(E)$, donc non vide. Soient $\lambda, \mu \in \mathbb{R}, u, v \in \mathcal{S}(E)$.

$$\forall X, Y \in E, \quad \langle (\lambda u + \mu v)(X), Y \rangle = \langle (\lambda u(X) + \mu v(X)), Y \rangle = \lambda \langle u(X), Y \rangle + \mu \langle v(X), Y \rangle$$

$$= \lambda \langle X, u(Y) \rangle + \mu \langle X, v(Y) \rangle = \langle X, \lambda u(Y) + \mu, v(Y) \rangle = \langle X, (\lambda u + \mu v)(Y) \rangle$$

Donc $\mathcal{S}(E)$ est bien stable par combinaison linéaire. Ainsi $\mathcal{S}(E)$ est un sous-espace vectoriel de $\mathcal{L}(E)$. Soit $u \in \mathcal{S}(E) \cap \mathcal{A}(E)$, alors

$$\forall X \in E, \|u(X)\|^2 = \langle u(X), u(X) \rangle = -\langle u \circ u(X), X \rangle = -\langle u(X), u(X) \rangle = -\|u(X)\|^2$$

Donc $2||u(X)||^2 = 0$, donc u(X) = 0.

Par conséquent, pour tout $X \in E$, u(X) = 0, donc u = 0.

L'inclusion réciproque est vraie (intersection d'espace vectoriel), donc $\mathcal{S}(E) \cap \mathcal{A}(E) = \{0\}$

(b) Commençons par une remarque:

En prenant $X = E_i$ et $Y = E_j$, on a $E_i^T A E_j = [A]_{i,j}$.

Donc si $\forall X, Y \in E, X^T A Y = 0$, alors A est nécessairement la matrice nulle.

La réciproque étant trivial, on a : $\forall X, Y \in E, X^T A Y = 0 \iff A = 0$.

Le calcul matriciel conduit à : $\forall X \in \overline{E, u(X) = M \times X, \text{ où } M = Mat_{\mathcal{B}}(u)}$.

D'après l'énoncé, on a $\forall X, Y \in E$,

$$\langle u(X), Y \rangle = \langle MX, Y \rangle = (MX)^T Y = X^T M^T Y \text{ et } \langle X, u(Y) \rangle = X^T M Y.$$

Donc $u \in \mathcal{S}(E) \iff \forall X, Y \in E, X^T M^T Y = X^T M Y \iff \forall X, Y \in E, X^T (M^T - M) Y = 0$

D'après la remarque initiale, on a donc $\underline{u \in \mathcal{S}(E)} \Longleftrightarrow M^T = M$ Et $u \in \mathcal{A}(E) \Leftrightarrow \forall X, Y \in E, X^T M^T Y = -\overline{X^T M Y} \Leftrightarrow \forall X, Y \in E, X^T (M^T + M) Y = 0$

On a donc $u \in \mathcal{A}(E) \iff M^T = -M$

(c) Par construction des matrice : $Mat_{\mathcal{B}}(u+\hat{u}) = Mat_{\mathcal{B}}(u) + Mat_{\mathcal{B}}(\hat{u}) = M + M^{T}$.

Or $(M + M^T)^T = M^T + M$, donc d'après la question précédente, $u + \hat{u} \in \mathcal{S}(E)$.

De même : $Mat_{\mathcal{B}}(u-\hat{u}) = Mat_{\mathcal{B}}(u) - Mat_{\mathcal{B}}(\hat{u}) = M - M^{T}$. Or $(M-M^{T})^{T} = M^{T} - M = -(M-M^{T})$, donc d'après la question précédente, $u-\hat{u} \in \mathcal{A}(E)$.

Ainsi $u + \hat{u} \in \mathcal{S}(E)$ et $u - \hat{u} \in \mathcal{A}(E)$

(d) On a vu que $S(E) \cap A(E) = \{0\}.$

Par ailleurs, si $u \in \mathcal{L}(E)$, on a avec $v = \frac{1}{2}(u + \hat{u})$ et $w = \frac{1}{2}(u - \hat{u})$,

- -u = v + w
- $-v \in \mathcal{S}(E)$
- $-u \in \mathcal{A}(E)$

Donc $\mathcal{L}(E) = \mathcal{S}(E) + \mathcal{A}(E)$.

Par conséquent S(E) et A(E) sont deux sous-espaces supplémentaires de L(E)

2. (a) σ est un endomorphisme symétrique réel, donc il existe une base orthonormale de E formée de vecteurs propres de σ .

Or $\dim(E) = 3$, donc cette base est constituée de 3 vecteurs.

Notons les : e_1, e_2, e_3 . On note également $\lambda_1, \lambda_2, \lambda_3$ les valeurs propres respectivement associées à chacun.

Soit $V \in E$, puisque (e_1, e_2, e_3) est une base de E, il existe $\alpha_1, \alpha_2, \alpha_3$ tel que $V = \alpha_1 e_1 + \alpha_1 e_2 + \alpha_2 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3 = \alpha_1 e_3 + \alpha_2 e_3 = \alpha_1 e_3 = \alpha_1 e_3 + \alpha_2 e_3 = \alpha_1 e_3 = \alpha_1 e_3 + \alpha_2 e_3 = \alpha_2 e_3 = \alpha_1 e_3 = \alpha_1 e_3 = \alpha_1 e_3 = \alpha_2 e_3 = \alpha_1 e$ $\alpha_2 e_2 + \alpha_3 e_3$.

On a alors, par linéarité :

$$\sigma(V) = \alpha_1 \sigma(e_1) + \alpha_2 \sigma(e_2) + \alpha_3 \sigma(e_3) = \alpha_1 \lambda_1 e_1 + \alpha_2 \lambda_2 e_2 + \alpha_3 \lambda_3 e_3$$

Or la famille (e_1, e_2, e_3) étant orthonormale : par projection orthogonale : $\alpha_i = \langle V, e_i \rangle$.

Et finalement : $\forall V \in E$, $\sigma(V) = \lambda_1 \langle e_1, V \rangle e_1 + \lambda_2 \langle e_2, V \rangle e_2 + \lambda_3 \langle e_3, V \rangle e_3$

- (b) Dans ce cas (σ symétrique),
 - σ est une projection (orthogonale) ssi $Sp(\sigma) = \{1, 0\} = \{\lambda_1, \lambda_2, \lambda_3\}$
 - σ est une symétrie (orthogonale) ssi $Sp(\sigma) = \{\overline{1, -1}\} = \{\lambda_1, \lambda_2, \lambda_3\}$
- (c) On applique ce qu'on a dit en question a : recherche de valeurs propres (à l'aide du polynôme caractéristique) et des vecteurs propres de manière à obtenir une base orthonormée.

Les calculs conduisent donc à : $\chi_{\sigma} = X^3 - 3X^2 - 9X + 27 = (X+3)(X-3)^2$. On a donc $\lambda_1 = \lambda_2 = 3$, puis $e_1 = \frac{1}{\sqrt{2}}(1\ 1\ 0)^T$ et $e_2 = \frac{1}{\sqrt{6}}(1\ -1\ 2)^T$ (par exemple). et $\lambda_3 = -3$, puis $e_3 = \frac{1}{\sqrt{3}}(1\ -1\ -1)^T$.

3. (a) Soit $(X,Y) \in \text{Ker } \alpha \times \text{Im } \alpha$. Il existe $Z \in E$ tel que Y = u(Z)

$$\langle X, Y \rangle = \langle X, u(Z) \rangle = -\langle (u(X), Z) \rangle = -\langle 0, Z \rangle = 0$$

Donc les espaces Ker α et Im α sont orthogonaux.

Ces espaces sont donc en somme directe, et en exploitant le théorème du rang : la somme de leur dimension donne celle de E.

Donc $E = \operatorname{Ker} \alpha \oplus \operatorname{Im} \alpha$

(b) Soit $Y \in \text{Im } \alpha$. Alors $\alpha(Y) \in \text{Im } \alpha$. Donc Im α est stable par α . Notons que α est non nul, par hypothèse, donc Im $\alpha \neq \{0\}$ (sinon Ker $\alpha = E$ et $\alpha = 0$). Soit λ une valeur propre réelle de $\tilde{\alpha}$ et $x \in \text{Im } \alpha$, un vecteur propre associé.

$$\lambda ||x||^2 = \langle \tilde{\alpha}(x), x \rangle = -\langle x, \tilde{\alpha}(x) \rangle = -\lambda ||x||^2$$

Et comme x est non nul (vecteur propre), alors $\lambda = 0$ et donc $x \in \text{Ker } \alpha \cap \text{Im } \alpha = \{0\}.$

On a une contradiction, donc $\tilde{\alpha}$ ne peut admettre de valeur propre réelle.

En particulier, 0 n'est pas valeur propre de $\tilde{\alpha}$, donc $\tilde{\alpha}$ est inversible.

Mais $Mat(\tilde{\alpha})$ est antisymétrique, comme celle de $Mat(\alpha)$, donc

$$\det(\tilde{\alpha}) = \det(Mat(\tilde{\alpha}) = \det(-Mat(\tilde{\alpha})^T) = (-1)^{\dim(\operatorname{Im}\,\alpha)} \det(Mat(\tilde{\alpha})^T) = (-1)^{\dim(\operatorname{Im}\,\alpha)} \det\tilde{\alpha}$$

Donc nécessairement, dim $(\operatorname{Im} \alpha)$ est pair, or elle n'est pas nulle et appartient a priori à [0,3]. Par conséquent, dim(Im α) = 2

(c) Ker α est de dimension 1, on note e_3 un vecteur normée de Ker α .

Soit e_1 , un vecteur normé, orthogonal à e_3 .

On considère ensuite $e_2 = \frac{1}{\|\alpha(e_1)\|} \alpha(e_1)$.

Par construction e_2 est également un vecteur normé.

Par définition,
$$e_2 \in \text{Im } \alpha$$
, donc d'après la question a , e_2 et e_3 sont orthogonaux. Enfin $\langle e_1, e_2 \rangle = \frac{1}{\|\alpha(e_1)\|} \langle e_1, \alpha(e_1) \rangle = \frac{1}{\|\alpha(e_1)\|} \alpha(e_1) \langle -\alpha(e_1), e_1 \rangle = -\langle e_2, e_1 \rangle$.

Et par symétrie du produit scalaire : $\langle e_1, e_2 \rangle = -\langle e_1, e_2 \rangle$, ce qui implique $\langle e_1, e_2 \rangle = 0$.

Par conséquent la famille (e_1, e_2, e_3) ainsi construite est orthonormale.

En outre, comme il s'agit d'une base (car famille libre) orthonormée :

$$\forall V \in E, \alpha(V) = \alpha(\langle e_1, V \rangle e_1 + \langle e_2, V \rangle e_2 + \langle e_3, V \rangle e_3) = \langle e_1, V \rangle \alpha(e_1) + \langle e_2, V \rangle \alpha(e_2) + \langle e_3, V \rangle \alpha(e_3)$$

Or on a vu que $\alpha(e_3) = 0$, $\alpha(e_1) = ke_2$, en notant $k = ||\alpha(e_1)||$, et

$$\langle \alpha(e_2), e_2 \rangle = \frac{1}{k} \langle e_1, e_2 \rangle = 0$$
 et $\langle \alpha(e_2), e_1 \rangle = -\langle e_2, \alpha(e_1) \rangle = -k \langle e_2, e_2 \rangle = -k \langle e_2, e_2 \rangle$

car e_2 est normé.

Donc
$$\forall V \in E, \ \alpha(V) = k(\langle e_1, V \rangle e_2 - \langle e_2, V \rangle e_1)$$

(d) On applique l'algorithme défini à la question précédente à partir de la matrice donnée dans l'énoncé.

On trouve successivement : $e_3 = \frac{1}{\sqrt{3}}(111)^T$,

puis on peut choisir (plus ou moins arbitrairement) : $e_1 = \frac{1}{\sqrt{2}}(1 - 10)^T$

et enfin $e_2 = \frac{1}{\sqrt{6}}(1 \ 1 \ -2)^T$.

On trouve alors $\alpha(e_1) = \frac{1}{\sqrt{2}}(1\ 1\ -2) = \sqrt{3}e_2$, donc $k = \sqrt{3}$. Notons que l'énoncé parle de base orthonormée directe. Cela ne semble plus au programme...

La base proposée ici est néanmoins orthonormée directe, on a en effet $e_2 = e_3 \wedge e_1$ (produit vectoriel)

4. Ici, on a les relations matricielles

$$Mat_{\mathcal{B}}(\sigma) = \begin{pmatrix} \cos \theta & 0 & 0\\ 0 & \cos \theta & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad Mat_{\mathcal{B}}(\alpha) = \begin{pmatrix} 0 & \sin \theta & 0\\ -\sin \theta & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

Pour σ , on a $\lambda_1 = \lambda_2 = \cos \theta$, $\lambda_3 = 1$ et la base canonique pour (e_1, e_2, e_3) .

Pour α , on prend, de nouveau, la base canonique pour (e_1, e_2, e_3) et on a $k = \sin \theta$.

Exercice 4

```
def fib(n):
         a,b=0,1
         if n==0:
            return(0)
1. (a)
         if n==1:
            return(1)
         for k in range(n-1):
            a,b=b,a+b
         return(b)
```

(b) Les calculs donnent : $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$ et $F_6 = 8$. 6 étant pair, on doit vérifier $F_6 = 2 \times F_2 F_3 + F_3^2$. Et le calcul donne : $2 \times 1 \times 2 + 2^2 = 4 + 4 = 8 = F_6$.

```
else :
  a=fibb((n-1)//2+1)
  b=fibb((n-1)//2)
  return (a**2+b**2)
```

- 2. (a) Posons, pour tout $n \in \mathbb{N}^*$, $\mathcal{P}_n : \ll A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} \gg$

 - \mathcal{P}_1 est vraie, par définition de A. Soit $n \in \mathbb{N}$. Supposons que \mathcal{P}_n est vraie

— Soit
$$n \in \mathbb{N}$$
. Supposons que \mathcal{P}_n est vraie
$$A_{n+1} = A \times A^n = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} F_n + F_{n+1} & F_n + F_{n-1} \\ F_{n+1} & F_n \end{pmatrix} = \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix}$$
Donc \mathcal{P}_{n+1} est vraie également.

On a démontré le résultat par récurrence : $A^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$

```
def fibbb(n):
       A=[[1,1],[1,0]]
       F=[[1,1],[1,0]]
       def prod(B,C) :
          return([[B[0][0]C[0][0]+B[0][1]+C[1][0],B[0][0]C[0][1]+B[0][1]+C[1][1]],
          [B[1][0]C[0][0]+B[1][1]+C[1][0],B[1][0]C[0][1]+B[1][1]+C[1][1]]])
(b)
       if n==0:
          return(0)
       if n==1:
          return(1)
       for k in range(n-1):
          A=prod(A,F)
       return(A[0][1])
```

- (c) Soit $n \in \mathbb{N}^*$. D'après la question 2.a), $\det(A^n) = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = F_{n+1}F_{n-1} F_n^2$. Mais on a aussi : $\det(A^n) = \det(A)^n = (-1)^n$. Donc pour tout $n \in \mathbb{N}^*$, $F_{n+1}F_{n-1} - F_n^2 = (-1)^n$.
- 3. (a) Par récurrence assez simple, on peut montrer que la suite (F_n) est strictement croissante, à valeurs entières et diverge vers $+\infty$.

On peut donc appliquer le théorème spécial des séries de signes alternés à la série $\sum_{n\geqslant 1} \frac{(-1)^n}{F_{n+1}F_n}$: $\left(\frac{1}{F_{n+1}F_n}\right)$ est positive, croissante, tendant vers 0. Ainsi, la série $\sum_{n\geqslant 1}\frac{(-1)^n}{F_{n+1}F_n}$ converge.

En divisant l'équation de la question précédente par $F_{n+1}F_n$, on a $\frac{(-1)^n}{F_{n+1}F_n} = \frac{F_{n-1}}{F_n} - \frac{F_n}{F_{n+1}}$.

Donc, par téléscopage :

$$\forall \ N \in \mathbb{N}, \quad \sum_{n=1}^{N} \frac{(-1)^n}{F_{n+1}F_n} = \sum_{n=1}^{N} \frac{F_{n-1}}{F_n} - \frac{F_n}{F_{n+1}} = \frac{F_0}{F_1} - \frac{F_N}{F_{N+1}} = -\frac{F_N}{F_{N+1}}$$

En donc, en prenant la limite $(N \to +\infty)$: $S = \sum_{n=1}^{+\infty} \frac{(-1)^n}{F_{n+1} F_n} = \lim_{N \to +\infty} -\frac{F_N}{F_{N+1}} = -L$

(b) Nous savons également, en ce qui concerne les séries de signes alternés

$$\forall N \in \mathbb{N}, \quad \left| \sum_{n=N}^{+\infty} \frac{(-1)^n}{F_{n+1} F_n} \right| \leqslant \frac{1}{F_{N+1} F_{N+2}}$$

On a donc dès que $\frac{F_N}{F_{N+1}} \leqslant \epsilon$,

$$\left| \sum_{n=N}^{+\infty} \frac{(-1)^n}{F_{n+1} F_n} \right| = \left| \sum_{n=1}^{N-1} \frac{(-1)^n}{F_{n+1} F_n} + L \right| \leqslant \epsilon$$

avec S=-L. Ce qui nous donne le programme suivant :

4. (a)
$$\frac{F_{N}}{F_{N+1}} = \frac{\Phi^{N} - \varphi^{N}}{\Phi^{N+1} - \varphi^{N+1}} = \frac{1}{\Phi} \frac{1 - \left(\frac{\varphi}{\Phi}\right)^{N}}{1 - \left(\frac{\varphi}{\Phi}\right)^{N+1}}$$
Or
$$\frac{\varphi}{\Phi} = \frac{1 - \sqrt{5}}{1 + \sqrt{5}} = \frac{1 - 2\sqrt{5} + 5}{1 - 5} = \frac{\sqrt{5} - 3}{2} \in] - 1, 0[(\operatorname{car} \sqrt{5} > 1).$$
Donc
$$\lim_{N \to +\infty} \left(\frac{\varphi}{\Phi}\right)^{N} = 0 \text{ et finalement } L = \lim_{N \to +\infty} \frac{F_{N}}{F_{N+1}} = \frac{1}{\Phi} = \frac{2(1 - \sqrt{5})}{1 - 5} = \frac{\sqrt{5} - 1}{2} = -\varphi$$

(b) Soit $x \in \mathbb{R}_+$ et $F_n x^n > 0$.

Pour étudier la convergence de la série entière $\sum_{n\geqslant 1}u_n$, on peut appliquer le critère de D'Alembert.

D'Alembert.
Or
$$\frac{F_{n+1}}{F_n} \xrightarrow[n \to +\infty]{} \frac{1}{L} = \frac{1}{-\varphi}$$
.

Donc le rayon de convergence de la série entière est $R=-\varphi$

Puis, pour tout $x \in]\varphi, -\varphi[$,

$$(1 - x - x^{2}) \sum_{n=1}^{+\infty} F_{n} x^{n} = \sum_{n=1}^{+\infty} F_{n} (x^{n} - x^{n+1} - x^{n+2}) = \sum_{n=1}^{+\infty} F_{n} x^{n} - \sum_{n=2}^{+\infty} F_{n-1} x^{n} - \sum_{n=3}^{+\infty} F_{n-2} x^{n}$$
$$= F_{1} x + F_{1} x^{2} - F_{2} x^{2} + \sum_{n=3}^{+\infty} (F_{n} - F_{n-1} - F_{n-2}) x^{n} = x$$

par définition de la suite (F_n) (premiers termes et récurrence).

Puis par division par $1-x-x^2$ (de racines φ et Φ , donc qui ne s'annule pas sur $]\varphi,-\varphi[)$:

$$\forall x \in]\varphi, -\varphi[, \qquad \sum_{n=1}^{+\infty} F_n x^n = \frac{x}{1 - x - x^2}.$$