Corrigé CCP PC 2016

Partie 1. Géométrie

1.

1.a)
$$P_{0,1}(t) = (1-t)^2$$
, $p_{1,2}(t) = 2t(1-t)$ et $p_{2,2}(t) = t^2$.

1.b) On trouve
$$A(t) = (t, 1)$$
, $B(t) = (1, 1 - t)$ puis $C(t) = (2t - t^2, 1 - t^2)$.

1.c)
$$\sum_{k=0}^{2} p_{k,2}(t) = (1-t)^{2}(1,0) + 2t(1-t)(1,1) + t^{2}(1,0) = (2t-t^{2}, 1-t^{2}) \text{ donc}$$
$$\sum_{k=0}^{2} p_{k,2}(t) = (1-t)^{2}(1,0) + 2t(1-t)(1,1) + t^{2}(1,0) = C(t).$$

$$\sum_{k=0}^{\infty} p_{k,2}(t) = (1-t)^2(1,0) + 2t(1-t)(1,1) + t^2(1,0) = C(t).$$

2. Soit
$$(u, v) \in \mathcal{T}$$
. $u = (x_u, y_u)$ et $v = (x_v, y_v)$. Montrons que le segment $[u; v]$ est inclus dans \mathcal{T} : Soit $\lambda \in [0; 1]$ et $w = \lambda u + (1 - \lambda)v$.

$$w = (x_w, y_w)$$
 où $x_w = \lambda x_u + (1 - \lambda)x_v$) et $y_w = \lambda y_u + (1 - \lambda)y_v$.

 $x_w + y_w = \lambda(x_u + y_u) + (1 - \lambda)(x_v + y_v)$. u et v sont dans \mathcal{T} donc $x_u + y_u \ge 1$ et $x_v + y_v \ge 1$. De plus λ et $1-\lambda$ sont positifs donc $x_w+y_w \geq \lambda+(1-\lambda)$. On en déduit que $w \in \mathcal{T}$ puis l'inclusion $[u;v]\subset\mathcal{T}$. Ceci étant vrai dès que u et v sont dans \mathcal{T} , on en conclut que \mathcal{T} est une partie convexe $de \mathbb{R}^2$.

3.

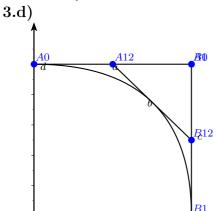
3.a) Soit
$$t \in [0; 1]$$
. $(2t - t^2) + (1 - t^2) - 1 = 2t(1 - t) \ge 0$ donc $2t - t^2 + (1 - t^2) \ge 1$ et $C(t) \in \mathcal{T}$: tous les points de \mathcal{C} sont dans \mathcal{T} .

3.b) Soit
$$t \in [0;1]$$
. $f'(t) = (2-2t, -2t)$. Ce vecteur n'est pas nul donc c'est un vecteur directeur de \mathcal{D}_t .

3.c) Soit
$$t \in [0; 1]$$
. $C(t) - A(t) = (t - t^2, -t^2) = \frac{t}{2}f'(t)$ et $C(t) \in \mathcal{D}_t$, $f'(t)$ dirige \mathcal{D}_t sont $A(t) \in \mathcal{D}_t$.

De même, avec $C(t) - B(t) = -\frac{(1-t)}{2}f'(t)$, on montrer que $B(t) \in \mathcal{D}_t$.

Par ailleurs la droite \mathcal{D}_t est une partie convexe de \mathbb{R}^2 donc le segment [A(t); B(t)] est inclus dans \mathcal{D}_t .



Partie 2. Algèbre linéaire et probabilités

4.

4.a) φ_n est une application de $\mathbb{R}_n[X]$ dans $\mathbb{R}[X]$.

Si $(P,Q) \in \mathbb{R}_n[X]^2$ et $\lambda \in \mathbb{R}$, par linéarité de la dérivation, $\varphi_n(P+\lambda Q) = \varphi_n(P) + \lambda \varphi_n(Q)$ donc φ_n est une application linéaire.

Si k < n, $\varphi_n(X^k)$ est de degré au plus k + 1 donc est dans $\mathbb{R}_n[X]$.

Par ailleurs, $\varphi_n(X^n) = nX^n \in \mathbb{R}_n[X]$ donc, avec la linéarité, on peut conclure que φ_n est une application de $\mathbb{R}_n[X]$ dans lui même.

Finalement, φ_n est un endomorphisme de $\mathbb{R}_n[X]$.

Si $P \in \mathbb{R}_n[X]$, pour tout k entre 0 et n, $P\left(\frac{k}{n}\right) \in \mathbb{R}$ et $p_{k,n}$ est un polynôme de degré n donc $B_n(P) \in \mathbb{R}_n[X]$: B_n est une application de $\mathbb{R}_n[X]$ dans lui même.

Pour $(P,Q) \in \mathbb{R}_n[X]^2$ et $\lambda \in \mathbb{R}$, $(P+\lambda Q)\left(\frac{k}{n}\right) = P\left(\frac{k}{n}\right) + \lambda Q\left(\frac{k}{n}\right)$ donc B_n est une application linéaire.

Par conséquent, B_n est un endomorphisme de $\mathbb{R}_n[X]$.

4.b) Si $k \in [1; n-1]$, $p'_{k,n}(X) = \binom{n}{k} k X^{k-1} (1-x)^{n-k} - \binom{n}{k} (n-k) X^k (1-X)^{n-k}$ puis $X(1-X)p'_{k,n}(X) = k(1-X)p_{k,n} - (n-k) X p_{k,n}(X)$. On vérifie que cette égalité est encore valable pour k=0 et pour k=n ce qui permet d'obtenir, après simplification, $\varphi_n(p_{k,n}(X)) = k p_{k,n}(X)$.

4.c) Pour tout entier k entre 0 et n, $p_{k,n}$ étant de plus non nul, c'est un vecteur propre associé à la valeur propre k. Ces valeurs propres étant deux à deux distinctes, on en déduit que la famille \mathcal{F} est libre. C'est de plus une famille de n+1 vecteurs de $\mathbb{R}_n[X]$ qui est de dimension n+1 donc \mathcal{F} est une base de $\mathbb{R}_n[X]$.

C'est alors une base de $\mathbb{R}_n[X]$ composée de vecteurs propres de φ_n donc φ_n est diagonalisable.

4.d) En particulier 0 est valeur propre de φ_n donc φ_n n'est pas bijectif.

Soit P dans le noyau de B_n . Comme la famille \mathcal{F} est libre, pour tout k entre 0 et n, $P\left(\frac{k}{n}\right) = 0$: P a donc au moins n + 1 racines distinctes et est de degré au plus n donc P est le polynôme

nul.

Par conséquent R est injectif: il s'agit d'un endomorphisme dans un espace de dimension finie

Par conséquent, B_n est injectif; il s'agit d'un endomorphisme dans un espace de dimension finie donc B_n est bijectif.

5.a) On considère une urne contenant des boules rouges et vertes. La proportion de boules rouges est t. On effectue r tirages successifs et avec remise d'une boule de cette urne. Le nombre de boules rouges obtenues suit alors la loi $\mathcal{B}(r,t)$ (nombre de succès lors de la réalisation de r épreuves de Bernoulli identiques et indépendantes).

5.b) $T_r(\Omega) = [0; r]$ et, pour tout k entre 0 et r, $P(T_r = k) = \binom{r}{k} t^k (1 - t)^{r-k}$ donc $P(T_r = k) = p_{k,r}(t)$.

5.c) On sait que $E(T_r) = rt$ donc, par linéarité de E, $E(\overline{T_r}) = t$. $V(T_r) = rt(1-t)$ donc $V(\overline{T_r}) = \frac{t(1-t)}{r}$.

D'autre part, $V(T_r) = E(T_r^2) - (E(T_r))^2$) donc $E(T_r^2) = rt(1-t+rt)$ et, toujours par linéarité, $E((\overline{T_r})^2) = \frac{t(1-t+rt)}{r} = \left(1-\frac{1}{r}\right)t^2 + \frac{1}{r}t.$

5.d) $T_r(\Omega) = [0; r] \text{ donc } \sum_{k=0}^r P(T_r = k) = 1 : \sum_{k=0}^r p_{k,r}(t) = 1.$

D'après la formule de transfert rappelée dans l'énoncé avec $h: y \mapsto \frac{y}{r}$,

$$E(\overline{T_r}) = \sum_{k=0}^r \frac{k}{r} P(T_r = k) = E(\overline{T_r}) : \sum_{k=0}^r \frac{k}{r} p_{k,r}(t) = t.$$

En utilisant $E((\overline{T_r})^2)$ et $h: y \mapsto \frac{y^2}{r^2}$, on obtient de même $\sum_{k=0}^r \left(\frac{k}{r}\right)^2 p_{k,r}(t) = \left(1 - \frac{1}{r}\right)t^2 + \frac{1}{r}t$.

- **5.e**) Ces trois égalités sont des égalités entre polynômes, valables en une infinité de points donc en tout point t de \mathbb{R} (si, pour tout $t \in [0;1]$, P(t) = Q(t), alors le polynôme P Q a une infinité de racines donc il est nul).
- **6.** Pour tous polynômes P et Q, $\deg(P + \lambda Q) \leq \max(\deg P, \deg Q)$ donc $\mathbb{R}_2[X]$ est un sous espace vectoriel de $\mathbb{R}_n[X]$ ($\mathbb{R}_2[X]$ est de plus non vide et est inclus dans $\mathbb{R}_n[X]$ car $n \geq 2$).

 $B_n(1)=1,\ B_n(X)=X$ et $B_n(X^2)=\left(1-\frac{1}{n}\right)X^2+\frac{1}{n}X$ donc $B_n(1),\ B_n(X)$ et $B_n(X^2)$ sont dans $\mathbb{R}_2[X]$. Comme $(1,X,X^2)$ engendre $\mathbb{R}_2[X]$, on en déduit que $\mathbb{R}_2[X]$ est stable par B_n .

7. On obtient A_n en mettant, en colonnes, les coordonnées de $B_n(1)$, $B_n(X)$ et $B_n(X^2)$ dans la base

$$(1, X, X^2)$$
 donc $A_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{n} \\ 0 & 0 & 1 - \frac{1}{n} \end{pmatrix}$. On vérifie alors que $A_n = \left(1 - \frac{1}{n}\right)I_3 + \frac{1}{n}H$.

8.

8.a) H est une matrice triangulaire supérieure donc ses valeurs propres sont ses éléments diagonaux : 0 et 1.

Le rang de H est égal à 2 donc la dimension de $E_0(H)$ est 1 (d'après le théorème du rang).

Le rang de $H - I_3$ est égal à 1 donc la dimension de $E_1(H)$ est 2.

Ainsi dim $E_1(H)$ + dim $E_0(H)$ = 3 et $H \in \mathcal{M}_3(\mathbb{R})$ donc H est diagonalisable.

8.b) Q est une matrice triangulaire supérieure à coefficients diagonaux non nuls donc Q est inversible (par exemple le déterminant de Q est $1 \neq 0$).

8.c) Soit h l'endomorphisme de \mathbb{R}^3 canoniquement associé à H h(1,0,0) = (1,0,0), h(0,1,0) = (0,1,0) donc, si on pose $e_1 = (1,0,0)$ et $e_2 = (0,1,0)$, (e_1,e_2) est une base de $E_1(h)$ (famille libre de 2 vecteurs dans un espace de dimension 2).

On cherche $(a, b) \in \mathbb{R}^3$ tel que $e_3 = (a, b, 1)$ engendre le noyau de H. On doit donc avoir a = 0 et b + 1 = 0 donc b = -1: $e_3 = (0, -1, 1)$.

D'après la question précédente, la matrice de (e_1, e_2, e_3) dans la base canonique de \mathbb{R}^3 est inversible donc (e_1, e_2, e_3) est une base de \mathbb{R}^3 dans laquelle la matrice de h est D. D'après la formule de changement de bases, on a alors $H = QDQ^{-1}$.

9.

9.a)
$$\lim_{n \to +\infty} \frac{1}{n} = 0 \text{ donc } \lim_{n \to +\infty} \left(1 - \frac{1}{n} \right) = 1 \text{ et } \lim_{n \to +\infty} A_n = I_3.$$

9.b) Soit $(M_1, M_2) \in \mathcal{M}_3(\mathbb{R})^2$ et $\lambda \in \mathbb{R}$.

Par propriété des opérations matricielles, $\psi(M_1 + \lambda M_2) = \psi(M_1) + ||\psi(M_2)||$ donc ψ est linéaire.

9.c) ψ est une application linéaire en dimension finie donc elle est continue : si $\lim_{l \to +\infty} M_l = M$, alors $\lim_{l \to +\infty} \psi(M_l) = \psi(M)$ c'est-à-dire $\lim_{l \to +\infty} (QM_lQ^{-1}) = QMQ^{-1}$.

9.d) $H = QDQ^{-1}$ et $QI_3Q^{-1} = I_3$ donc $A_n = QA'_nQ^{-1}$ où $A'_n = \left(1 - \frac{1}{n}\right)I_3 + \frac{1}{n}D = D_n$. Ainsi $A_n = QD_nQ^{-1}$.

9.e) Pour $n \ge 2$, $0 \le 1 - \frac{1}{n} < 1$ donc $\lim_{l \to +\infty} \left(1 - \frac{1}{n}\right)^l = 0$. Ainsi $\lim_{l \to +\infty} D_n^l = D$.

De plus, pour tout entier naturel l, $A_n^l = Q D_n^l Q^{-1}$ donc, d'après la question 9.c), $\lim_{l \to +\infty} A_n^l = Q D Q^{-1} = H$.

9.f) Pour $n \geq 2$, $A_n^n = Q D_n^n Q^{-1}$.

$$\lim_{n \to +\infty} \left(1 - \frac{1}{n} \right)^n = e^{-1} \operatorname{donc} \lim_{n \to +\infty} D_n^n = \begin{pmatrix} 1 & 0 & 0 \\ & 1 & 0 \\ 0 & 0 & e^{-1} \end{pmatrix} = e^{-1} I_3 + (1 - e^{-1}) D.$$

D'après la question 9.c), $\lim_{n \to +\infty} A_n^n = e^{-1}I_3 + (1 - e^{-1})QDQ^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 - e^{-1} \\ 0 & 0 & e^{-1} \end{pmatrix}$

Partie 3. Analyse et probabilités

10.

10.a) La variance de Y est positive donc $E(Y^2) \geq (E(Y))^2$. Par croissance de la racine carrée, $|E(Y)| \leq \sqrt{E(Y^2)}$ et, pour tout réel $x, x \leq |x|$ donc $E(Y) \leq \sqrt{E(Y^2)}$.

10.b) On applique ce qui précède à $Y = |t - \overline{T_n}|$. Comme $E(\overline{T_n}) = t$, $E(Y^2) = V(\overline{T_n}) = \frac{t(1-t)}{n}$

(question 5.) donc

$$E(|t - \overline{T_n})| \le \sqrt{\frac{t(1-t)}{n}}$$

11.

11.a) f est de classe C^1 sur [0;1] donc f' est continue sur le segment [0;1]. On en déduit que f' est bornée sur ce segment : il existe $M_f \in \mathbb{R}^+$ tel que, pour tout $x \in [0;1]$, $|f'(x)| \leq M_f$. L'inégalité des accroissements finis permet alors de conclure que :

$$\forall (a,b) \in [0;1]^2, |f(a) - f(b)| \le M_f |a - b|$$

11.b) Soit $t \in [0; 1]$.

D'après la question précédente, pour tout $w \in \Omega$, $|f(t) - f(\overline{T_n(w)})| \leq M_f |t - \overline{T_n}|$ ($\overline{T_n}$ ne prend que des valeurs dans [0; 1]).

Par croissance et linéarité de l'espérance, on a $E(|f(t) - f(\overline{T_n})|) \leq M_f E(|t - \overline{T_n}|)$ et, avec la question 10.b),

$$E(|f(t) - f(\overline{T_n})|) \le M_f \sqrt{\frac{t(1-t)}{n}}$$

11.c) Pour $t \in [0;1]$, $t(1-t) = \frac{1}{4} - (\frac{1}{2} - t)^2 \le \frac{1}{4}$ donc, en utilisant la question précédente et la remarque de l'énoncé (début de partie 3.),

$$\forall t \in [0; 1], |f(t) - B_n(f)(t)| \le \frac{M_f}{2\sqrt{n}}$$

11.d) On en déduit que $\frac{M_f}{2\sqrt{n}}$ est un majorant de $f - B_n(f)$ sur [0;1] donc $||f - B_n(f)||_{\infty} \le \frac{M_f}{2\sqrt{n}}$. Par encadrement, $\lim_{n \to +\infty} ||f - B_n(f)||_{\infty} = 0$: la suite $(B_n(f))_n$ converge uniformément vers f sur [0;1].

Partie 4. Intégrales

12. Pour tout $n \in \mathbb{N}^*$, $B_n(f)$ est une fonction continue sur le segment [0;1] et la suite de fonctions $(B_n(f))_n$ converge uniformément sur [0;1] vers f donc on peut utiliser le théorème d'interversion limite/intégrale pour obtenir :

$$\lim_{n \to +\infty} \left(\int_0^1 B_n(f)(x) dx \right) = \int_0^1 f(x) dx$$

13.

13.a) Soit $(a,b) \in \mathbb{N}^* \times \mathbb{N}$.

a et b sont positifs donc $x \mapsto x^a(1-x)^b$ est continue sur le segment [0;1] donc $\int_0^1 x^a(1-x)^b dx$ existe.

On pose $u(x) = x^a$, $v'(x) = (1-x)^b$ et $u'(x) = ax^{a-1}$ et $v(x) = -\frac{1}{b+1}(1-x)^{b+1}$. Comme $a \ge 1$,

u et v sont de classe \mathcal{C}^1 sur le segment [0;1] donc, par intégration par parties, $\int_0^1 x^a (1-x)^b dx =$

$$\left[-\frac{1}{b+1} x^a (1-x)^{b+1} \right]_0^1 + \frac{a}{b+1} \int_0^1 x^{a-1} (1-x)^{b+1} dx. \ a > 0 \text{ et } b+1 > 0 \text{ donc}$$

$$\int_0^1 x^a (1-x)^b dx = \frac{a}{b+1} \int_0^1 x^{a-1} (1-x)^{b+1} dx$$

13.b) Soit k entre 1 et n.

La question précédente avec
$$a = k$$
 et $b = n - k$ donne
$$\int_0^1 p_{k,n}(x) dx = \binom{n}{k} \frac{k}{n - k + 1} \int_0^1 x^{k-1} (1-x)^{n-k+1} dx \text{ puis } \int_0^1 p_{k,n}(x) dx = \binom{n}{k} \frac{k}{n - k + 1} \frac{1}{\binom{n}{k-1}} \int_0^1 p_{k-1} dx$$
 Par ailleurs,
$$\binom{n}{k} \frac{k}{n - k + 1} \frac{1}{\binom{n}{k-1}} = \frac{k(k-1)!(n-k+1)!}{k!(n-k)!(n-k+1)} = 1 \text{ donc }$$

$$\int_0^1 p_{k,n}(x)dx = \int_0^1 p_{k-1,n}(x)dx.$$

On en déduit que l'intégrale $\int_0^1 p_{k,n}(x)dx$ ne dépend pas de k entre 0 et n. En particulier, elle

est égale à
$$\int_0^1 p_{n,n}(x)dx = \int_0^{J_0} x^n dx = \frac{1}{n+1}$$
.

$$\int_0^1 p_{k,n}(x) dx = \frac{1}{n+1}$$

13.c) Par linéarité de l'intégrale de fonctions continues sur un segment,

$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la question précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la que stion précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la que stion précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la que stion précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$
; la que stion précédente nous dit alors que
$$\int_0^1 B_n(f)(x)dx = \sum_{k=0}^n f\left(\frac{k}{n}\right) \int_0^1 p_{k,n}(x)dx$$

En utilisant la question 12., on conclut alors que $\lim_{n\to+\infty} S_n(f) = \int_0^1 f(x) dx$.

14. On suppose maintenant que f est continue sur [0;1]

$$f$$
 est continue en 1 donc $\lim_{n\to+\infty} \frac{1}{n+1} f(1) = 0$ et $S_n(f) \sim \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$.

On reconnait alors la suite des sommes de Riemann associée à la fonction continue f sur le segment [0;1] et on retrouve $\lim_{n\to+\infty} S_n(f) = \int_0^1 f(x)dx$.

15.

15.a) Soit
$$x \in [0; 1]$$
 et $f : u \mapsto \frac{u^a (1 + xu)^b}{(1 + u)^c}$.

a, b et c sont des entiers naturels donc f est continue sur $[0; +\infty[$ en tant que quotient de

fonctions continues sur cet intervalle. Quand u tend vers l'infini, $f(u) \sim \frac{1}{u^{c-a-b}}$ or $c-a-b \geq 2 > 1$ donc la fonction $u \mapsto \frac{1}{u^{c-a-b}}$ est intégrable sur $[1; +\infty[$. Par comparaison, f l'est aus

On peut alors conclure que l'intégrale $\int_0^{+\infty} \frac{u^a(1+xu)^b}{(1+u)^c} du$ est convergente.

15.b) Soit g la fonction définie sur $[0;1] \times [0;+\infty[$ par $g(x,u)=\frac{u^a(1+xu)^b}{(1+u)^c}$.

Pour tout $u \in [0; +\infty[$, la fonction $x \mapsto g(x, u)$ est de classe \mathcal{C}^1 sur [0; 1] (car $b \ge 1$). De plus, pour $(x, u) \in [0; 1] \times [0; +\infty[$, $\frac{\partial g}{\partial x}(x, u) = \frac{bu^{a+1}(1+xu)^{b-1}}{(1+u)^c}$.

Pour tout $x \in [0, 1]$, la fonction $u \mapsto g(x, u)$ est continue par morceaux sur $[0, +\infty[$ et intégrable (question précédente).

 $b-1 \ge 0$ donc, pour tout $x \in [0;1], u \mapsto \frac{\partial g}{\partial x}(x,u)$ est continue par morceaux sur $[0;+\infty[$.

Pour $(x, u) \in [0; 1] \times [0; +\infty[$, $0 \le 1 + xu \le 1 + u$ donc, comme $b - 1 \ge 0$, $\left| \frac{\partial g}{\partial x}(x, u) \right| \le \varphi(u)$ où $\varphi(u) = \frac{bu^{a+1}(1+u)^{b-1}}{(1+u)^c}.$

 φ est continue par morceaux et positive sur $[0; +\infty[$ et, quand u tend vers l'infini, $\varphi(u) \sim \frac{b}{u^{c-a-b}}$

avec c - a - b > 1 donc φ est intégrable sur $[0; +\infty[$.

D'après le théorème de dérivabilité des intégrales à paramètre, F est de classe C^1 sur [0;1].

15.c) Par quotient, h est de classe C^1 sur [0;1[. De plus, pour $t \in [0;1[$, $h'(t) = \frac{1}{(1-t)^2} > 0$ donc h est strictement croissante.

h est continue et strictement croissante sur l'intervalle [0, 1] donc, d'après le théorème de bijection, h réalise une bijection de [0;1] dans $h([0;1]) = [h(0); \lim_1 h[=[0;+\infty[$

15.d)
$$F(0) = \int_0^{+\infty} \frac{u^a}{(1+u)^c} du.$$

Comme h est de classe \mathcal{C}^1 et bijective, on peut utiliser le changement de variable $u = \frac{t}{1-t}$. On obtient alors $F(0) = \int_0^{+\infty} t^a (1-t)^{c-a-2} dt = \frac{1}{(c-2)} \int_0^1 p_{a,c-2}(t) dt$. Avec le début de la partie 4, $F(0) = \frac{1}{\binom{c-2}{c-1}} \frac{1}{c-1}.$

$$F(1) = \int_0^{+\infty} \frac{u^a}{(1+u)^{c-b}} du \text{ donc } F(1) = \frac{1}{\binom{c-b-2}{a}} \frac{1}{c-b-1}$$

Partie 5. Séries de fonctions

16. Pour
$$n \ge k$$
, $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$.

 $n, n-1, \dots, n-k+1$ sont k termes équivalents à n. k est fixé donc, par produit, $\binom{n}{k} \sim \frac{n^k}{k!}$ quand n tend vers l'infini.

En multipliant par $t^k(1-t)^{n-k}$, on obtient, pour $t \in]0;1[$, $f_n(t) \sim_{+\infty} \frac{n^k}{k!} \left(\frac{t}{1-t}\right)^{\kappa} (1-t)^n$.

17. Soit $t \in [0; 1]$.

Pour tout $n \in \mathbb{N}$, $f_n(0) = 0$ donc la série $\sum f_n(0)$ converge.

Si n > k, $f_n(1) = 0$ donc la série $\sum f_n(1)$ converge.

Pour $t \in]0; 1[$, on pose $u_n(t) = \frac{n^k}{k!} \left(\frac{t}{1-t}\right)^k (1-t)^n$.

 $u_n(t) > 0$ et $\frac{u_{n+1}(t)}{u_n(t)} = \left(\frac{n+1}{n}\right)^{\kappa} (1-t)$ donc $\lim_{n \to +\infty} \frac{u_{n+1}(t)}{u_n(t)} = 1-t < 1$. D'après le critère de d'Alembert, la série $\sum u_n(t)$ converge.

Par comparaison de séries à termes positifs, la série $\sum f_n(t)$ converge.

Conclusion : pour tout $t \in [0;1]$, la série $\sum f_n(t)$ converge simplement sur [0;1]. 18. Comme vu précédemment, S(0) = 0 et $S(1) = f_k(1) = 1$.

19.a) Si
$$u \in]-1;1[, \frac{1}{1-u} = \sum_{n=0}^{+\infty} u^n.$$

19.b) On dérive k fois cette égalité. Par récurrence, on démontre que la dérivée kième de $u \mapsto \frac{1}{1-u}$ est $u \mapsto \frac{\kappa!}{(1-u)^{k+1}}$. Par conséquent, pour tout $u \in [0;1[$,

$$\sum_{n=k}^{+\infty} n(n-1)\cdots(n-k+1)u^{n-k} = \frac{k!}{(1-u)^{k+1}}$$

19.c) Soit $t \in]0;1]$.

En utilisant la définition de $f_n(t)$, $S(t) = \sum_{n=k}^{+\infty} \frac{n(n-1)\cdots(n-k+1)}{k!} t^k (1-t)^{n-k}$ donc, avec la question précédente, $S(t) = \frac{t^k}{(1-(1-t))^{k+1}}$. Après simplification, on trouve $S(t) = \frac{1}{t}$.

19.d) Supposons que la série $\sum f_n$ converge normalement sur [0;1].

Pour tout $n \in \mathbb{N}$, f_n est continue sur [0;1] donc, d'après le théorème de transfert de continuité, S est continue sur [0;1].

D'après la question précédente, S n'est pas continue sur [0;1] donc il y a une contradiction.

Par conséquent, la série de fonctions $\sum f_n$ ne converge pas normalement sur [0;1].