ENCPB PC 2024/25

DM de Mathématiques nº 6

Pour le Lundi 24 mars

Temps d'attente avant une collision (CCINP 2024-25)

Présentation générale

On considère un entier $n \in \mathbb{N}^*$. On dispose d'une urne contenant n boules numérotées par les entiers de 1 à n. On procède à une succession de tirages avec remise dans cette urne. On s'intéresse au nombre de tirages nécessaires pour tirer pour la seconde fois une boule déjà tirée auparavant.

Pour modéliser cette situation, on se place sur un espace probabilisé (Ω, \mathcal{A}, P) et on considère une suite $(X_k)_{k \in \mathbb{N}^*}$ de variables aléatoires réelles indépendantes de loi uniforme sur $[\![1,n]\!]$. On considère la variable aléatoire T_n définie de la façon suivante :

$$T_n = \min \{ j \in [2, n+1] \mid \exists i \in [1, j-1], \quad X_i = X_j \}$$

Par exemple, si on suppose que n=4 et que l'évènement :

$$(X_1 = 1) \cap (X_2 = 3) \cap (X_3 = 2) \cap (X_4 = 3) \cap (X_5 = 4)$$

est réalisé, alors on a $T_n = 4$, car c'est au quatrième tirage que pour la première fois réapparait un résultat déjà obtenu.

L'objectif de cet exercice est de déterminer un équivalent de l'espérance de la variable aléatoire T_n lorsque $n \to +\infty$.

Partie I - Une expression de l'espérance de T_n

- 1. Déterminer les valeurs prises par la variable aléatoire T_n . Dans la suite de cette partie, on considère un entier $k \in [\![1,n]\!]$ et la variable aléatoire $Z = (X_1,\ldots,X_k)$.
- 2. Justifier que Z suit la loi uniforme sur $[1, n]^k$.
- 3. Dans cette question, on considère l'évènement :

$$A = \left\{ (a_1, \dots, a_k) \in [1, n]^k \mid \text{ les éléments } a_1, \dots, a_k \text{ sont deux à deux distincts } \right\}.$$

Exprimer le cardinal de A en fonction de n et de k, puis en déduire que :

$$P(T_n > k) = P(Z \in A) = \frac{n!}{(n-k)!} \frac{1}{n^k}$$

On remarque que le résultat de la question précédente est encore valable pour k=0.

4. Justifier que la variable aléatoire T_n est d'espérance finie et que l'on a :

$$E(T_n) = \sum_{\ell=0}^{n} \frac{n!}{(n-\ell)!} \frac{1}{n^{\ell}}$$

Partie II - Une expression intégrale de l'espérance

Dans cette partie, on détermine une expression de l'espérance de T_n sous la forme d'une intégrale. Pour tout $k \in \mathbb{N}$, on considère l'intégrale :

$$I_k = \int_0^{+\infty} t^k e^{-t} dt$$

- 5. Soit $k \in \mathbb{N}$. Montrer que l'intégrale I_k est convergente.
- 6. Montrer que pour tout $k \in \mathbb{N}$, on a $I_k = k!$.
- 7. En déduire que l'intégrale $\int_0^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt$ converge, puis que :

$$E(T_n) = \int_0^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt$$

Partie III - Un équivalent de l'espérance

Dans cette partie, on détermine un équivalent de l'intégrale obtenue à la question Q31 lorsque $n \to +\infty$. Pour tout entier $n \in \mathbb{N}^*$, on considère les intégrales :

$$I_n = \int_0^n \left(1 + \frac{t}{n}\right)^n e^{-t} dt \quad \text{et} \quad J_n = \int_n^{+\infty} \left(1 + \frac{t}{n}\right)^n e^{-t} dt$$

Les résultats de la partie précédente impliquent la convergence de ces deux intégrales.

III. 1 - Étude de la suite $(J_n)_{n\in\mathbb{N}}$.

8. Soit $n \in \mathbb{N}^*$. En utilisant un changement de variable, établir que :

$$J_n = e^{-n} \int_0^{+\infty} \left(2 + \frac{v}{n}\right)^n e^{-v} dv$$

9. Montrer que la suite $(K_n)_{n\in\mathbb{N}}$ · définie par :

$$\forall n \in \mathbb{N}^*, \quad K_n = \int_0^{+\infty} \left(1 + \frac{v}{2n}\right)^n e^{-v} dv$$

est bornée. On pourra utiliser librement l'inégalité $1+x\leqslant \mathrm{e}^x$ valable pour tout $x\in\mathbb{R}$.

10. En déduire que la suite $(J_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.

III. 2 - Étude de la suite $(I_n)_{n\in\mathbb{N}^*}$

Dans cette sous-partie, on définit la fonction $f_n:]0, +\infty[\to \mathbb{R} \text{ par } :$

$$\forall u \in]0, +\infty[, \quad f_n(u) = \begin{cases} \left(1 + \frac{u}{\sqrt{n}}\right)^n e^{-u\sqrt{n}} & \text{si } u < \sqrt{n} \\ 0 & \text{si } u \geqslant \sqrt{n} \end{cases}$$

11. Montrer que:

$$I_n = \sqrt{n} \int_0^{\sqrt{n}} \left(1 + \frac{u}{\sqrt{n}} \right)^n e^{-u\sqrt{n}} du = \sqrt{n} \int_0^{+\infty} f_n(u) du$$

12. Montrer que pour tout $u \in]0, \sqrt{n}[$, on a l'égalité :

$$\ln(f_n(u)) = \sum_{k=2}^{+\infty} \frac{(-1)^{k-1}}{k} \frac{u^k}{n^{\frac{k}{2}-1}}$$

13. En déduire que pour tout $u \in]0, \sqrt{n}[$, on a les inégalités :

$$\left| \ln \left(f_n(u) \right) + \frac{u^2}{2} \right| \leqslant \frac{u^3}{3\sqrt{n}}, \quad \ln \left(f_n(u) \right) \leqslant -\frac{u^2}{6}.$$

14. Justifier que la fonction $u\mapsto \mathrm{e}^{-u^2/2}$ est intégrable sur $[0,+\infty[$, puis établir que :

$$\lim_{n \to +\infty} \left(\int_0^{+\infty} f_n(u) du \right) = \int_0^{+\infty} e^{-u^2/2} du$$

III. 3 - Conclusion

15. En admettant que $\int_0^{+\infty} e^{-u^2/2} du = \sqrt{\frac{\pi}{2}}$, déterminer un équivalent de $E(T_n)$ lorsque $n \to +\infty$.