Chapitre 15

Calcul différentiel

https://www.jean-philippe-preaux.fr

Table des matières

1.	Dérivation de fonctions vectorielles.	1
2.	Fonctions de \mathbb{R}^n dans \mathbb{R}	6
2.1.	. Rappels : Fonctions de classe \mathscr{C}^1 de \mathbb{R}^2 dans \mathbb{R}	6
2.2.	. Dérivées partielles de fonctions de \mathbb{R}^n dans \mathbb{R}	9
2.3.	. Fonctions de classe \mathscr{C}^1 de \mathbb{R}^n dans \mathbb{R}	10
2.4.	. Opérations sur les fonctions de classe \mathscr{C}^1	14
2.5.	. Dérivées partielles secondes et fonctions de classe \mathscr{C}^2	18
2.6.	. Formule de Taylor d'ordre 2 et recherche d'extremum	19

Dans tout le chapitre I désigne un intervalle d'intérieur non vide, et n un entier ≥ 1 . On considère des applications à variables réelles et valeurs réelles.

Nous développons le calcul différentiel :

- Dans la première partie des applications $f: I \to \mathbb{R}^n$, c'est-à-dire, en fait, des courbes paramétrées en dimension $n \ge 1$.
- Dans la seconde partie des applications $f: \mathbb{R}^n \longrightarrow \mathbb{R}$.

Le calcul différentiel des applications de $\mathbb{R}^n \longrightarrow \mathbb{R}^p$ découle sans difficulté de ces deux parties. Nous ne le traiterons cependant pas, afin d'éviter les confusions.

1. Dérivation de fonctions vectorielles.

Définition 1. (Dérivée en un point)

Soient $n \in \mathbb{N}^*$, I un intervalle non trivial de \mathbb{R} , $f: I \longrightarrow \mathbb{R}^n$ et $t_0 \in I$.

On dit que f est dérivable en t_0 si et seulement si le taux d'accroissement en t_0 :

$$T_{t_0}f: I \setminus \{t_0\} \longrightarrow \mathbb{R}^n$$

$$t \longmapsto \frac{1}{t-t_0} \cdot (f(t) - f(t_0))$$

admet une limite lorsque $t \longrightarrow t_0$. Si cette limite existe, elle est notée $f'(t_0)$ et appelée dérivée de f en t_0 :

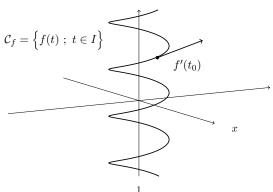
$$f'(t_0) = \lim_{t \to t_0} T_{t_0} f(t) = \lim_{t \to t_0} \frac{1}{t - t_0} \cdot (f(t) - f(t_0))$$

On dit que f est dérivable si et seulement si elle est dérivable en tout point de I.

L'application $f' = Df = \frac{df}{dx} : I \longrightarrow \mathbb{R}^n$ est alors appelée dérivée de f.

On note $\mathcal{D}(I,\mathbb{R}^n)$ l'ensemble des applications dérivables de I dans \mathbb{R}^n .

Remarque. Si n=2 ou n=3, la dérivée s'interprète comme le vecteur vitesse de la courbe paramétrée $t \mapsto f(t)$. Sa norme euclidienne est la vitesse instantanée.



Proposition 1. (Développement limité d'ordre 1)

Sous les mêmes hypothèses, f est dérivable en $t_0 \in I$ si et seulement si f admet un développement limité à l'ordre 1 en t_0 , c'est à dire :

$$f(t) = f(t_0) + (t - t_0) \cdot V + \underset{t \to t_0}{o} (t - t_0)$$

 $avec\ V\in\mathbb{R}^n\ et\ \underset{t\to t_0}{o}(t-t_0)=(t-t_0)\cdot h(t)\ o\grave{u}\ h:I\longrightarrow\mathbb{R}^n\ et\ \underset{t\to t_0}{\lim}\ h(t)=0_{\mathbb{R}^n}.$

On a alors $f'(t_0) = V$

Démonstration. On a :

$$f(t) = f\left(t_{0}\right) + \left(t - t_{0}\right) \cdot V + o(t - t_{0}) \iff \frac{1}{t - t_{0}} \cdot \left(f(t) - f(t_{0})\right) = V + \frac{1}{t - t_{0}} \cdot o(t - t_{0}) \underset{t \to t_{0}}{\longrightarrow} V$$

Remarque. Dans ce cas la courbe paramétrée admet au point $f(t_0)$ la droite tangente de vecteur directeur $V = f'(t_0)$.

On a le résultat fondamental suivant.

Proposition 2. (Dérivabilité des coordonnées)

Soit

$$f: I \longrightarrow \mathbb{R}^n$$

 $t \longmapsto (f_1(t), \dots, f_n(t))$

f est dérivable en t_0 si et seulement si pour tout $i \in [1, n]$, f_i est dérivable en t_0 . On a alors :

$$f'(t_0) = (f'_1(t_0), \dots, f'_n(t_0))$$

Démonstration. En dimension finie la convergence d'une fonction équivaut à la convergence de ses fonctions coordonnées dans la base canonique :

$$T_{t_0} f(t) = \frac{1}{t - t_0} \cdot \left(\left(f_1(t), \dots, f_n(t) \right) - \left(f_1(t_0), \dots, f_n(t_0) \right) \right)$$

$$= \left(\frac{f_1(t) - f_1(t_0)}{t - t_0}, \dots, \frac{f_n(t) - f_n(t_0)}{t - t_0} \right) \xrightarrow[t \to t_0]{} (f'_1(t_0), \dots, f'_n(t_0))$$

Remarque. En particulier, si pour tout $t \in I$, $f'(t) = 0_{\mathbb{R}^n}$ alors f est constante sur l'intervalle I, puisque toutes ses fonctions coordonnées sont des applications à valeurs réelles et de dérivée nulle.

Théorème 3. (Dérivable ⇒ continue)

Toute application $f: I \longrightarrow \mathbb{R}^n$ dérivable est continue.

Démonstration. Découle de la proposition 2 et du fait qu'en dimensions finie, la continuité d'une application équivaut à celles de ses coordonnées dans la base canonique.

Propriété 4. (Combinaison linéaire)

L'ensemble $\mathcal{D}(I,\mathbb{R}^n)$ des applications dérivables de I dans \mathbb{R}^n est un sous-espace vectoriel de $\mathscr{C}^0(I,\mathbb{R}^n)$, et $f\mapsto f'$ est une application linéaire de $\mathcal{D}(I,\mathbb{R}^n)$ sur $\mathcal{F}(I,\mathbb{R}^n)$ c'est à dire : si f et g sont dérivables alors pour tout $(\lambda,\mu)\in\mathbb{R}^2$, $(\lambda f+\mu g)$ est dérivable de dérivée

$$(\lambda f + \mu g)' = \lambda f' + \mu g'.$$

Démonstration. Découle de la proposition 2 et de la propriété analogue sur la dérivée scalaire.

Propriété 5. (Composition à droite)

 $Soit \ g \in \mathscr{D}(I,\mathbb{R}), \ tel \ que \ g(I) \subset J, \ et \ f \in \mathscr{D}(J,\mathbb{R}^n), \ alors \ f \circ g \in \mathscr{D}(I,\mathbb{R}^n) \ et \ det \ g \in \mathscr{D}(I,\mathbb{R}^n)$

$$(f \circ q)' = q' \cdot (f' \circ q)$$

Démonstration. Découle de la proposition 2 et de la propriété analogue sur la dérivée scalaire :

$$(f \circ g)' = (f_1 \circ g, \dots, f_n \circ g)' = (g' \cdot (f'_1 \circ g), \dots, g' \cdot (f'_n \circ g)) = g' \cdot (f'_1 \circ g, \dots, f'_n \circ g) = g' \cdot (f' \circ g)$$

Propriété 6. (Composition à gauche par une application linéaire)

Soit $L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ et $f \in \mathcal{D}(I, \mathbb{R}^n)$; alors $L(f) : I \longrightarrow \mathbb{R}^p$ est dérivable et :

$$L(f)' = L(f')$$

 ${\bf D\acute{e}monstration.}\;$ Par définition et par linéarité de L :

$$\frac{1}{t - t_0} \cdot (L(f)(t) - L(f)(t_0)) = L\left(\frac{1}{t - t_0} \cdot (f(t) - f(t_0))\right) \xrightarrow[t \to t_0]{} L(f'(t_0))$$

Propriété 7. (Composition à gauche par une application bilinéaire)

Soient des entiers $n, p, q \ge 1$, une application bilinéaire $\varphi : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^q$, et deux applications dérivables définies sur $I: f \in \mathcal{D}(I, \mathbb{R}^n)$ et $g \in \mathcal{D}(I, \mathbb{R}^p)$. Alors l'application :

$$\begin{array}{ccc} \varphi(f,g):I & \longrightarrow & \mathbb{R}^q \\ x & \longmapsto & \varphi(f(x),g(x)) \end{array}$$

est dérivable sur I et :

$$(\varphi(f,g))' = \varphi(f',g) + \varphi(f,g').$$

 ${\bf D\acute{e}monstration.} \ \ ({\rm Non\ exigible.})\ L'argument\ ne\ pr\acute{e}sente\ pas\ de\ difficult\'e:$

$$\begin{split} T_{t_0}(\varphi(f,g))(t) &= \frac{1}{t-t_0} \cdot \left[\varphi(f(t),g(t)) - \varphi(f(t_0),g(t_0)) \right] \\ &= \frac{1}{t-t_0} \cdot \left[\varphi(f(t),g(t)) - \varphi(f(t_0),g(t)) + \varphi(f(t_0),g(t)) - \varphi(f(t_0),g(t_0)) \right] \\ &= \frac{1}{t-t_0} \cdot \left[\varphi(f(t)-f(t_0),g(t)) + \varphi(f(t_0),g(t)-g(t_0)) \right] \\ &= \varphi\Big(\frac{1}{t-t_0} \cdot (f(t)-f(t_0)) \;,\; g(t) \Big) + \varphi\Big(f(t_0) \;,\; \frac{1}{t-t_0} \cdot (g(t)-g(t_0)) \Big) \end{split}$$

(par bilinéarité)

$$T_{t_0}(\varphi(f,g))(t) \xrightarrow[t \to t_0]{} \varphi(f'(t_0),g(t_0)) + \varphi(f(t_0),g'(t_0))$$

puisque φ est continue (car bilinéaire en dimension finie), et f,g sont dérivables en t_0 et donc aussi continues.

On en déduit les corollaires importants :

COROLLAIRE 8.

• Produit d'une fonction scalaire par une fonction vectorielle : $Si \ \lambda: I \longrightarrow \mathbb{R} \ et \ g: I \longrightarrow \mathbb{R}^n \ sont \ d\'{e}rivables, \ alors \ \lambda g: I \longrightarrow \mathbb{R}^n \ est \ d\'{e}rivable \ et:$

$$(\lambda g)' = \lambda' g + \lambda g'$$

Produit scalaire de fonctions vectorielles :

 $Si\ f,g:I\to\mathbb{R}^n\ sont\ dérivables,\ alors\ \langle f\mid g\rangle\ est\ dérivable\ et:$

$$\langle f \mid g \rangle' = \langle f' \mid g \rangle + \langle f \mid g' \rangle$$

 $où \langle \cdot | \cdot \rangle$ désigne un produit scalaire sur \mathbb{R}^n .

• Déterminant de fonctions à valeurs dans \mathbb{R}^2 :

 $Si\ f,g:I\to\mathbb{R}^2$, alors $\det(f,g)$ est dérivable et :

$$(\det(f,g))' = \det(f',g) + \det(f,g')$$

Démonstration. Toutes sont des composées à gauche par une application bilinéaire.

Exercice 1.

Soient $f: I \to \mathbb{R}^n$ dérivable. On munit \mathbb{R}^n de sa structure euclidienne canonique.

- 1. Montrer que $(\|f\|^2)' = 2\langle f' | f \rangle$
- 2. Montrer que si $\forall t \in I$, f(t) est unitaire alors $f(t) \perp f'(t)$.

Résolution.

Propriété 9. (Composition à gauche par une application multilinéaire)

Soient (n+1) entiers $p_1, \ldots, p_n, q \ge 1$, soit une application n-linéaire $M : \mathbb{R}^{p_1} \times \cdots \times \mathbb{R}^{p_n} \longrightarrow \mathbb{R}^q$, et n applications dérivables f_1, \ldots, f_n où pour tout $i \in [\![1, n]\!]$, $f_i : I \longrightarrow \mathbb{R}^{p_i}$; alors l'application :

$$M(f_1,\ldots,f_n): I \longrightarrow \mathbb{R}^q$$

 $x \longmapsto M(f_1(x),\ldots,f_n(x))$

est dérivable et :

$$M(f_1, ..., f_n)' = M(f'_1, ..., f_n) + \cdots + M(f_1, ..., f'_n)$$

Démonstration. Non exigible. Procède de la même façon que pour la composition par une application bilinéaire.

COROLLAIRE 10. (Déterminant de fonctions à valeurs dans \mathbb{R}^n)

Si pour tout $i \in [1, n]$, $f_i : I \longrightarrow \mathbb{R}^n$ est dérivable, alors $\det(f_1, \dots, f_n)$ est dérivable et : $\det(f_1, \dots, f_n)' = \det(f'_1, \dots, f_n) + \dots + \det(f_1, \dots, f'_n)$

Démonstration. Le déterminant de n vecteurs de \mathbb{R}^n est une forme n-linéaire.

DÉFINITION 2. (Fonctions de classe \mathscr{C}^p)

- Soit $f: I \longrightarrow \mathbb{R}^n$; on définit par récurrence sur $p \in \mathbb{N}$ la dérivée p-ième $f^{(p)}$ de f en posant $f^{(0)} = f$, et, pour tout $p \in \mathbb{N}$, si $f^{(p)}$ existe et est dérivable sur I, alors $f^{(p+1)} = (f^{(p)})'$. On peut noter aussi $f^{(p)} = \mathbb{D}^p f = \frac{\mathrm{d}^p f}{\mathrm{d} x^p}$.
- L'ensemble des fonctions p fois dérivables sur I à valeurs dans \mathbb{R}^n est noté $\mathscr{D}^p(I,\mathbb{R}^n)$.
- L'ensemble des fonctions p fois dérivables sur I à valeurs dans \mathbb{R}^n dont la dérivée p-ième $f^{(p)}$ est continue est noté $\mathscr{C}^p(I,\mathbb{R}^n)$; une telle application est dite de classe \mathscr{C}^p .
- L'ensemble des fonctions p fois dérivables sur I à valeurs dans \mathbb{R}^n pour tout $p \in \mathbb{N}$ est noté $\mathscr{C}^{\infty}(I,\mathbb{R}^n)$; une telle application est dite de classe \mathscr{C}^{∞} .
- On a alors les inclusions $\mathscr{C}^{\infty}(I,\mathbb{R}^n) \subset \mathscr{C}^{p+1}(I,\mathbb{R}^n) \subset \mathscr{D}^{p+1}(I,\mathbb{R}^n) \subset \mathscr{C}^p(I,\mathbb{R}^n)$.

Remarque. On déduit aisément des propriétés précédentes des propriétés analogues pour les fonctions p fois dérivables sur I (seules les formules peuvent se révéler plus compliquées).

On pourrait poursuivre la généralisation en intégrant des fonctions vectorielles, en évoquant les formules de Taylor, etc. Démontrons à titre d'exemple l'inégalité des accroissements finis dans ce contexte.

Exercice 2. Inégalité des accroissements finis.

Soit $f \in \mathcal{C}^1(I, \mathbb{R}^n)$. On munit \mathbb{R}^n de sa structure euclidienne canonique. On suppose qu'il existe $M \in \mathbb{R}^+$ tel que $\forall t \in I$, $||f'(t)|| \leq M$. On se donne a < b deux réels de I.

Soit
$$\varphi : \left\{ \begin{array}{l} I \longrightarrow \mathbb{R} \\ t \longmapsto \langle f(b) - f(a) \mid f(t) \rangle \end{array} \right.$$

- 1. Montrer que φ est dérivable sur I et que pour tout $t \in I$, $|\varphi'(t)| \leq M \|f(b) f(a)\|$.
- 2. En déduire (inégalité des accroissements finis pour la norme euclidienne)

$$||f(b) - f(a)|| \le M \cdot (b - a).$$

Jean-Philippe Préaux

2. Fonctions de \mathbb{R}^n dans \mathbb{R}

2.1. Rappels : Fonctions de classe \mathscr{C}^1 de \mathbb{R}^2 dans \mathbb{R} .

On munit \mathbb{R}^3 de sa structure euclidienne canonique, et on le représente dans l'espace muni d'un repère orthonormé direct.

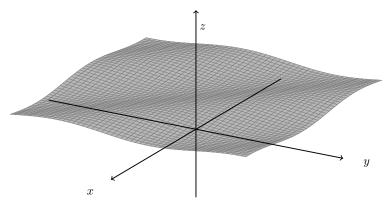
Pour une fonction réelle de 2 variables réelles :

$$\begin{array}{cccc} f: \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & f(x,y) \end{array}$$

Son domaine de définition \mathcal{D}_f est l'ensemble des $(x,y) \in \mathbb{R}^2$ où f(x,y) est bien définie. Le graphe de f est le sous-ensemble de \mathbb{R}^3 :

$$\mathscr{G}_f = \left\{ (x, y, z) \in \mathbb{R}^3 \mid (x, y) \in \mathscr{D}_f \text{ et } z = f(x, y) \right\}$$

sa représentation dans l'espace est la surface représentative de f.



Pour étudier f, le plus simple est de se ramener à des fonctions d'une seule variable réelle, en considérant les fonctions partielles :

Soient $f: \mathcal{D}_f \longrightarrow \mathbb{R}$ et $(x_0, y_0) \in \mathcal{D}_f$;

 \bullet La première fonction partielle en (x_0,y_0) est :

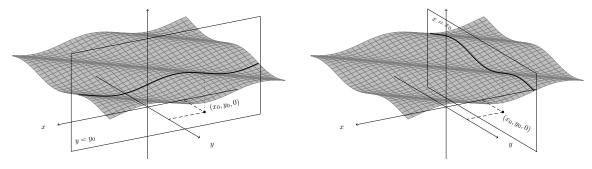
$$f_x: x \longmapsto f(x, y_0)$$

• La seconde fonction partielle en (x_0, y_0) est :

$$f_y: y \longmapsto f(x_0, y)$$

Remarque.

- La courbe représentative de la première fonction partielle en (x_0, y_0) s'obtient en intersectant la surface représentative de f avec le plan vertical $y = y_0$:
- La courbe représentative de la seconde fonction partielle en (x_0, y_0) s'obtient en intersectant la surface représentative de f avec le plan vertical $x = x_0$:
- Courbe des première et seconde fonctions partielles en (x_0, y_0) :



Soit (x_0, y_0) un point dans l'intérieur du domaine de définition \mathcal{D}_f de f;

• Si en (x_0, y_0) , la première fonction partielle est dérivable en x_0 , alors on appelle première dérivée partielle (ou dérivée partielle par rapport à x) en (x_0, y_0) le réel :

$$\frac{\partial f}{\partial x}(x_0, y_0) = f'_x(x_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

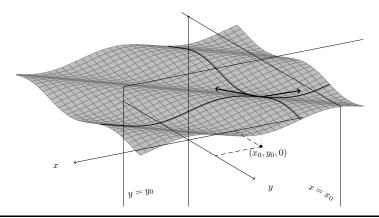
• Si en (x_0, y_0) , la seconde fonction partielle est dérivable en y_0 , alors on appelle seconde dérivée partielle (ou dérivée partielle par rapport à y) en (x_0, y_0) le réel :

$$\frac{\partial f}{\partial y}(x_0, y_0) = f'_y(y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

On dit alors que f admet des dérivées partielles en (x_0, y_0)

Remarque. On a représenté la surface représentative, et :

- Dans le plan $y = y_0$, la courbe de $z = f_x(x)$ et le vecteur : $(1, 0, \frac{\partial f}{\partial x}(x_0, y_0))$.
- Dans le plan $x = x_0$, la courbe de $z = f_y(y)$ et le vecteur : $(0, 1, \frac{\partial f}{\partial y}(x_0, y_0))$.



On définit en tout point (x_0, y_0) de D où f admet des dérivées partielles : la première fonction dérivée partielle :

$$\begin{array}{cccc} \frac{\partial f}{\partial x}: & D & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & \frac{\partial f}{\partial x}(x,y) \end{array}$$

et, la seconde fonction dérivée partielle :

$$\frac{\partial f}{\partial y}: \qquad D \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \frac{\partial f}{\partial y}(x,y)$$

Ce sont des fonctions réelles de deux variables réelles.

On dit que f est de classe \mathscr{C}^1 sur D si ces deux fonctions sont continues sur D.

Une application de classe \mathscr{C}^1 au voisinage d'un point (x_0, y_0) , admet un développement de Taylor

Lorsque f est de classe \mathscr{C}^1 sur un ouvert contenant (x_0, y_0) , on a le développement de Taylor à l'ordre 1;

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + h \times \frac{\partial f}{\partial x}(x_0, y_0) + k \times \frac{\partial f}{\partial y}(x_0, y_0) + o(\|(h, k)\|)$$

Le développement de Taylor s'écrit plus simplement à l'aide du vecteur gradient :

Lorsque f admet des dérivées partielles en (x_0, y_0) , son vecteur gradient en (x_0, y_0) est le vecteur $\nabla f(x_0, y_0) \in \mathbb{R}^2$:

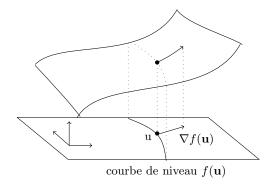
$$\nabla f(x_0, y_0) = \left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0)\right)$$

Si f est de classe \mathscr{C}^1 sur un ouvert contenant (x_0, y_0) , son développement de Taylor s'écrit

$$f(x_0 + h, y_0 + k) = f(x_0, y_0) + \langle \nabla f(x_0, y_0) \mid (h, k) \rangle + o(\|(h, k)\|)$$

Remarque. Le vecteur gradient est un vecteur de \mathbb{R}^2 qu'on a coutume de représenter sur le plan z=0. Il vient rapidement que le vecteur gradient a les propriétés suivantes :

- Il donne la direction de plus grande pente sur la surface représentative.
- Il est normal à la tangente au point (x_0, y_0) de la courbe de niveau $f(x_0, y_0)$.



(Ici on a noté $\mathbf{u} = (x_0, y_0)$.)

où la courbe de niveau $f(x_0, y_0)$ est défini comme courbe représentative de :

$$\{(x, y, 0) \in \mathbb{R}^3 \mid f(x, y) = f(x_0, y_0)\}$$

- En un extremum local le gradient s'annule : par exemple pour :

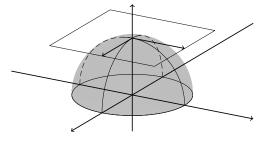
$$f:(x,y)\longmapsto\sqrt{1-(x^2+y^2)}$$

les deux dérivées partielles :

$$\frac{\partial f}{\partial x}(x,y) = -\frac{x}{\sqrt{1 - (x^2 + y^2)}}$$
$$\frac{\partial f}{\partial x}(x,y) = -\frac{y}{\sqrt{1 - (x^2 + y^2)}}$$

$$\frac{\partial f}{\partial y}(x,y) = -\frac{y}{\sqrt{1 - (x^2 + y^2)}}$$

s'annulent en (0,0).



Mais c'est une condition nécessaire non suffisante : le gradient peut être nul en un point (x_0, y_0) sans que la fonction n'y admette un extremum; par exemple pour :

$$g:(x,y)\longmapsto x^2-y^2$$

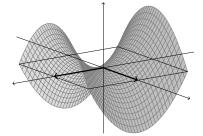
 $g:(x,y)\longmapsto x^2-y^2$ les deux dérivées partielles :

$$\frac{\partial g}{\partial x}(x,y) = 2x$$
 ; $\frac{\partial g}{\partial y}(x,y) = -2y$

s'annulent en (0,0) qui n'est pas un extremum car :

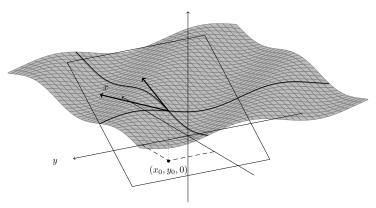
$$g(x,0) = x^2 > g(0,0) > -y^2 = g(0,y)$$

pour $x, y \neq 0$.



Lorsque f est de classe \mathscr{C}^1 sur un ouvert contenant (x_0, y_0) , sa surface représentative admet un plan tangent au point $M_0(x_0, y_0, f(x_0, y_0))$. C'est un sous-espace affine de dimension 2.

Les deux vecteurs $(1, 0, \frac{\partial f}{\partial x}(x_0, y_0))$ et $(0, 1, \frac{\partial f}{\partial y}(x_0, y_0))$ sont des vecteurs directeurs du plan tangent à la surface représentative au point M_0 .



Ainsi le plan tangent en $M_0(x_0, y_0, f(x_0, y_0))$ a pour équation :

$$z = f(x_0, y_0) + (x - x_0) \times \frac{\partial f}{\partial x}(x_0, y_0) + (y - y_0) \times \frac{\partial f}{\partial y}(x_0, y_0)$$

2.2. Dérivées partielles de fonctions de \mathbb{R}^n dans \mathbb{R} .

On suppose \mathbb{R}^n muni de sa structure euclidienne canonique; on note $\langle . | . \rangle$ son produit scalaire et $\|.\|$ la norme associée.

DÉFINITION 3. (Dérivée selon une direction)

Soit $A \subset \mathbb{R}^n$ et $f: A \longrightarrow \mathbb{R}$, pour tout point a dans l'intérieur de A et pour tout vecteur $v \in \mathbb{R}^n$, on appelle dérivée en a de f selon le vecteur v, si elle existe :

$$D_v f(a) = \lim_{t \to 0} \frac{1}{t} \cdot (f(a+t \cdot v) - f(a))$$

c'est à dire la dérivée en 0 de la fonction de la variable réelle :

$$\begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ t & \longmapsto & f(a+t\cdot v) \end{array}$$

DÉFINITION 4. (Fonctions partielles; dérivées partielles)

Soit U un ouvert de \mathbb{R}^n , $f: U \longrightarrow \mathbb{R}$ et $a = (a_1, \dots, a_n) \in U$.

ullet La i-ème application partielle de f en a est l'application de la variable réelle :

$$t \longmapsto f(a_1, \ldots, a_i + t, \ldots, a_n)$$

• La i-ème dérivée partielle de f en a est, si elle existe, la dérivée en 0 de la i-ème application partielle de f en a :

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{1}{t} \cdot (f(a_1, \dots, a_i + t, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n))$$

 $\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{1}{t} \cdot (f(a_1, \dots, a_i + t, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n))$ c'est à dire la dérivée en a de f selon le i-ème vecteur e_i de la base canonique de \mathbb{R}^n . On la note $\frac{\partial f}{\partial x_i}(a)$ ou encore $\partial_i f(a)$.

Exemple. Lorsque f et constante, toutes ses dérivées partielles sont nulles. Remarques.

• En notant (e_1, \ldots, e_n) la base canonique, la *i*-ème dérivée partielle en a est la dérivée en a selon le vecteur e_i :

$$\partial_i f(a) = D_{e_i} f(a)$$

 \bullet Lorsque les variables de f sont notées x,y,z,\ldots on note les dérivées partielles :

$$\frac{\partial f}{\partial x}(a), \ \frac{\partial f}{\partial y}(a), \ \frac{\partial f}{\partial z}(a)$$

• Les dérivées partielles sont des fonctions de n variables réelles à valeurs dans \mathbb{R} .

DÉFINITION 5. (Vecteur gradient)

Sous les mêmes hypothèses, si f admet des dérivées partielles en $a \in U$, on note :

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right) \in \mathbb{R}^n$$

le vecteur gradient de f en a.

Remarque. On a alors pour tout $i \in [1, n]$:

$$\frac{\partial f}{\partial x_i}(a) = D_{e_i} f(a) = \langle \nabla f(a) \mid e_i \rangle$$

où $e_i = (0, \dots, 1, \dots, 0)$ désigne le *i*-ème vecteur de la base canonique.

Remarque. Comme déjà remarqué dans un exercice traité au chapitre "Espaces normés", une fonction peut admettre des dérivées partielles sans être continue. Par exemple :

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

L'application n'est pas continue en (0,0); en effet, soit $(x_n,y_n)=\left(\frac{1}{n},\frac{1}{n}\right)\underset{n\to+\infty}{\longrightarrow}(0,0)$ alors :

$$f(x_n, y_n) = \frac{\frac{1}{n^2}}{\frac{2}{n^2}} = \frac{1}{2} \xrightarrow[n \to +\infty]{} \frac{1}{2} \neq 0$$

Pourtant elle admet des dérivées partielles en (0,0):

$$\frac{f(t,0)-f(0,0)}{t}=0\underset{t\to 0}{\longrightarrow}0=\frac{\partial f}{\partial x}(0,0) \qquad \qquad \frac{f(0,0)-f(0,t)}{t}=0\underset{t\to 0}{\longrightarrow}0=\frac{\partial f}{\partial y}(0,0)$$

2.3. Fonctions de classe \mathscr{C}^1 de \mathbb{R}^n dans \mathbb{R} .

Définition 6. (Fonction de classe \mathscr{C}^1)

Sous les mêmes hypothèses, on dit que f est de classe \mathscr{C}^1 si f admet des dérivées partielles en tout points $a \in U$ et si toutes les fonction dérivées partielles sont continues sur U. L'ensemble des applications de classe \mathscr{C}^1 de U dans \mathbb{R} est noté $\mathscr{C}^1(U,\mathbb{R})$.

Exemple. Soit:

$$\begin{array}{ccc} f: \ \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ (x,y,z) & \longmapsto & x^2y - 5z \end{array}$$

f est de classe \mathscr{C}^1 et admet pour dérivées partielles :

$$\frac{\partial f}{\partial x}(x,y,z) = 2xy, \qquad \frac{\partial f}{\partial y}(x,y,z) = x^2, \qquad \frac{\partial f}{\partial z}(x,y,z) = -5$$

en effet les dérivées partielles sont continues car polynomiales.

Théorème 11. (Développement de Taylor d'ordre 1)

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$ et soit $a \in U$. Alors pour tout $h = (h_1, \ldots, h_n) \in \mathbb{R}^n$ tel que $a + h \in U$, on a:

$$f(a+h) \underset{h \to 0_{\mathbb{R}^n}}{=} f(a) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \times h_i + o(\|h\|) \underset{h \to 0_{\mathbb{R}^n}}{=} f(a) + \langle \nabla f(a) \mid h \rangle + o(\|h\|)$$

 $\textbf{D\'{e}monstration.} \hspace{0.2cm} \textbf{Admis. S'obtient par exemple en appliquant} \hspace{0.2cm} n \hspace{0.2cm} \textbf{fois l'\'{e}galit\'{e}} \hspace{0.2cm} \textbf{des accroissements finis aux fonctions partielles}.$

DÉFINITION 7. (Différentielle de f en a)

Soit $f \in \mathscr{C}^1(U,\mathbb{R})$ et $a \in U$; on appelle différentielle de f en a, l'application :

$$df(a) : \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$h = (h_1, \dots, h_n) \longmapsto df(a) \cdot h = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) \times h_i = \langle \nabla f(a) \mid h \rangle$$

C'est une forme linéaire. En particulier la formule de Taylor à l'ordre 1 s'écrit :

$$f(a+h) = \int_{h\to 0_{\mathbb{R}^n}} f(a) + df(a) \cdot h + o(\|h\|)$$

Remarques.

• Lorsque $f \in \mathcal{C}^1(U, \mathbb{R})$, on peut définir aussi la différentielle de f:

$$\begin{array}{ccc} df: U & \longrightarrow & \mathscr{L}(\mathbb{R}^n, \mathbb{R}) \\ a & \longmapsto & df(a) \end{array}$$

• Lorsque f est de classe \mathscr{C}^1 ; pour $v \in \mathbb{R}^n$ et $t \in \mathbb{R}$ suffisamment proche de 0:

$$f(a+t\cdot v) - f(a) = df(a)\cdot (t\cdot v) + o(||t.v||) = t\cdot df(a)\cdot v + o(|t|)$$

et donc:

$$D_v f(a) = \lim_{t \to 0} \frac{1}{t} \cdot (f(a + t \cdot v) - f(a)) = df(a) \cdot v = \langle \nabla f(a) \mid v \rangle$$

Ainsi on a le résultat suivant qui interprète $df(a) \cdot v$:

Propriété 12. (Lien différentielle/dérivée directionnelle)

Si $f \in \mathcal{C}^1(U,\mathbb{R})$ alors pour tout $a \in U$ et $v \in \mathbb{R}^n$, f admet une dérivée en a selon le vecteur v et :

$$D_v f(a) = df(a) \cdot v = \langle \nabla f(a) \mid v \rangle$$

Exercice 3. Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- 1. On suppose f de classe \mathscr{C}^1 ; calculer df(0,0).
- 2. Pour $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, calculer à l'aide de la définition $D_{(a,b)}f(0,0)$.
- 3. Conclure.

Résolution.

On a l'interprétation suivante du vecteur gradient :

Propriété 13. (Le gradient est la direction de plus grande pente)

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$ et $a \in U$; soit $v \in \mathbb{R}^n$ une vecteur unitaire, ||v|| = 1; alors

$$df(a) \cdot v \leq \|\nabla f(a)\|$$

et si $\nabla f(a) \neq 0_{\mathbb{R}^n}$:

$$df(a) \cdot \frac{1}{\|\nabla f(a)\|} \cdot \nabla f(a) = \|\nabla f(a)\|$$

Ainsi $\nabla f(a)$ est localement la direction de plus grande pente.

 ${\bf D\acute{e}monstration.} \ \ \, {\rm On \ applique \ Cauchy-Schwartz}:$

$$df(a) \cdot v \leqslant |\langle \nabla f(a) \mid v \rangle| \leqslant ||\nabla f(a)|| \times ||v|| = ||\nabla f(a)||$$

Si $\nabla f(a) \neq 0_{\mathbb{R}^n}$:

$$d\!f(a) \cdot \frac{1}{\|\nabla f(a)\|} \cdot \nabla f(a) = \frac{1}{\|\nabla f(a)\|} \ \left\langle \nabla f(a) \mid \nabla f(a) \right\rangle = \frac{1}{\|\nabla f(a)\|} \times \left\|\nabla f(a)\right\|^2 = \left\|\nabla f(a)\right\|$$

Remarque. Précisons que $\nabla f(a)$ est localement la direction de plus grande pente : soit $\nabla \in \mathbb{R}^n$ le vecteur unitaire positivement colinéaire à $\nabla f(a)$ et $v \in \mathbb{R}^n$ un vecteur unitaire quelconque. On a alors pour $t \in \mathbb{R}_+$ suffisamment proche de 0^+ :

$$f(a+t\cdot\nabla) = f(a) + t \times df(a) \cdot \nabla + o(|t|)$$

$$f(a+t\cdot v) = f(a) + t \times df(a) \cdot v + o(|t|)$$

$$\implies f(a+t\cdot\nabla) - f(a+t\cdot v) = t \times (\underbrace{df(a) \cdot \nabla - df(a) \cdot v}_{\geqslant 0}) + o(|t|)$$

et donc pour t suffisamment proche de 0^+ , quelque soit la direction v, $f(a+t\cdot\nabla) \ge f(a+t\cdot v)$.

Être de classe \mathscr{C}^1 assure de la continuité.

Corollaire 14. ($\mathscr{C}^1 \Longrightarrow \mathscr{C}^0$)

Si f est de classe \mathscr{C}^1 alors f est continue.

Démonstration. En tout $a \in U$ et pour toute suite $h_p = (h_p^1, \dots, h_p^n) \xrightarrow[p \to +\infty]{} 0_{\mathbb{R}^n}$ on applique le développement limité :

$$f(a+h_p) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) \times h_p^i + o(\|h_p\|) \underset{p \to +\infty}{\longrightarrow} 0$$

et donc $f(x) \xrightarrow[x \to a]{} f(a)$ d'après la caractérisation séquentielle de la limite : f est continue en a.

Remarque. Reprenons l'exemple vu plus haut d'une application qui admet des dérivées partielles sans être continue.

$$\begin{array}{cccc} f: \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \begin{cases} \frac{xy}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

ses dérivées partielles sont :

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{y^3 - x^2 y}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \end{cases} \qquad \frac{\partial f}{\partial y}(x,y) = \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{x^3 - xy^2}{(x^2 + y^2)^2} & \text{si } (x,y) \neq (0,0) \end{cases}$$

et $\frac{\partial f}{\partial x}(0,y) = \frac{1}{y}$ n'a pas de limite quand $y \longrightarrow 0$. Ainsi, comme attendu, f n'est pas de classe \mathscr{C}^1 .

Propriété 15. (Dérivation le long d'un arc de U)

Soit $f \in \mathcal{C}^1(U,\mathbb{R})$ et $\gamma: I \longrightarrow U$ une application dérivable définie sur un intervalle I et à valeurs dans U. Alors :

$$\begin{array}{ccc} f\circ\gamma:I & \longrightarrow & \mathbb{R} \\ & t & \longmapsto & f\circ\gamma(t) \end{array}$$

est dérivable et pour tout $t_0 \in I$, en notant $a = \gamma(t_0)$.

$$(f \circ \gamma)'(t_0) = df(a) \cdot \gamma'(t_0)$$

De plus, si γ est de classe \mathscr{C}^1 , alors $f \circ \gamma$ est de classe \mathscr{C}^1 .

Remarque. C'est une dérivation le long de l'arc γ . Pour un arc rectiligne : $\gamma(t) = t \cdot v$, avec $v \in \mathbb{R}^n$, $\gamma'(t) = v$ et on retrouve la dérivée en $a = \gamma(t_0)$ selon le vecteur v:

$$(f \circ \gamma)'(t_0) = df(a) \cdot v = D_v f(a)$$

Démonstration. Soit $a = \gamma(t_0)$; notons pour tout $h \in \mathbb{R}^n$, $h = (h_1, \dots, h_n)$; notamment $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)) \in U \subset \mathbb{R}^n$. Considérons le développement d'ordre 1 en a de f:

$$f(a+h) = f(a) + \sum_{i=1}^{n} h_i \times \partial_i f(a) + ||h|| \times \varepsilon(h)$$

avec $\varepsilon(h) \underset{h \to 0_{\mathbb{P}^n}}{\longrightarrow} 0$. En particulier pour $h = \gamma(t) - \gamma(t_0)$:

$$\begin{split} f(\gamma(t)) &= f(\gamma(t_0)) + \sum_{i=1}^n (\gamma_i(t) - \gamma_i(t_0)) \times \partial_i f(a) + \|(\gamma(t) - \gamma(t_0))\| \times \varepsilon(\gamma(t) - \gamma(t_0)) \\ \Longrightarrow & \frac{f(\gamma(t)) - f(\gamma(t_0))}{t - t_0} = \sum_{i=1}^n \frac{\gamma_i(t) - \gamma_i(t_0)}{t - t_0} \times \partial_i f(a) + \left\| \frac{\gamma(t) - \gamma(t_0)}{t - t_0} \right\| \times \varepsilon(\gamma(t) - \gamma(t_0)) \end{split}$$

Puisque γ est dérivable en

$$\forall i \in \llbracket 1, n \rrbracket, \ \frac{\gamma_i(t) - \gamma_i(t_0)}{t - t_0} \xrightarrow[t \to t_0]{} \gamma_i'(t_0) \implies \sum_{i=1}^n \frac{\gamma_i(t) - \gamma_i(t_0)}{t - t_0} \times \partial_i f(a) \xrightarrow[t \to t_0]{} \sum_{i=1}^n \gamma_i'(t_0) \times \partial_i f(a)$$

et la norme étant continue :

$$\left\|\frac{\gamma(t) - \gamma(t_0)}{t - t_0}\right\| \underset{t \to t_0}{\longrightarrow} \|\gamma'(t_0)\|$$

 $\left\|\frac{\gamma(t)-\gamma(t_0)}{t-t_0}\right\|\underset{t\to t_0}{\longrightarrow}\|\gamma'(t_0)\|$ γ étant dérivable en $t_0,$ elle est aussi continue en $t_0,$ donc $\gamma(t)\underset{t\to t_0}{\longrightarrow}\gamma(t_0)$ et donc :

$$\varepsilon(\gamma(t) - \gamma(t_0)) \underset{t \to t_0}{\longrightarrow} 0$$

Ainsi:

$$\frac{f(\gamma(t)) - f(\gamma(t_0))}{t - t_0} \xrightarrow[t \to t_0]{} \sum_{i=1}^n \gamma_i'(t_0) \times \hat{\sigma}_i f(a) \quad \text{c'est à dire}: \quad (f \circ \gamma)'(t_0) = df(a) \cdot \gamma'(t_0)$$

Si f et γ sont de classe \mathscr{C}^1 toutes les fonctions γ_i' , $\partial_i f$ et γ sont continues, et donc de :

$$(f \circ \gamma)'(t_0) = \sum_{i=1}^n \gamma_i'(t_0) \times \partial_i f \circ \gamma(t_0)$$

découle que $(f\circ\gamma)'$ est continue, c'est à dire que $(f\circ\gamma)$ est de classe $\mathscr{C}^1.$

Exemple. Une grandeur physique qui dépend du temps et de l'espace peut se modéliser par

$$\begin{array}{cccc} f: \mathbb{R}^3 \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x, y, z, t) & \longmapsto & f(x, y, z, t) \end{array}$$

La position au cours du temps d'un point M(t) dans l'espace est donnée par $\gamma: t \longmapsto (x(t), y(t), z(t))$. Ainsi $g: t \longmapsto f(x(t), y(t), z(t), t)$ donne l'évolution au cours du temps de la grandeur f au point M(t) et au temps t. Si f est de classe \mathscr{C}^1 et γ est dérivable, alors g est dérivable et on peut écrire :

$$g'(t) = x'(t)\frac{\partial f}{\partial x}(\gamma(t), t) + y'(t)\frac{\partial f}{\partial y}(\gamma(t), t) + z'(t)\frac{\partial f}{\partial z}(\gamma(t), t) + \frac{\partial f}{\partial t}(\gamma(t), t)$$

ce qu'on écrit plus simplement en omettant le point où les dérivées partielles sont évaluées :

$$\frac{\partial}{\partial t} f(x(t), y(t), z(t), t) = x'(t) \frac{\partial f}{\partial x} + y'(t) \frac{\partial f}{\partial y} + z'(t) \frac{\partial f}{\partial z} + \frac{\partial f}{\partial t}$$

THÉORÈME 16. (Caractérisation des applications constantes sur un convexe)

Soit U un ouvert convexe non vide et $f: U \longrightarrow \mathbb{R}$; alors f est constante sur U si et seulement si f et de classe \mathscr{C}^1 et df = 0.

Démonstration. Si f et constante, il est clair par définition que f admet en tout point des dérivées partielles toutes nulles, et donc f et de classe \mathscr{C}^1 et df = 0.

Réciproquement, supposons f de classe \mathscr{C}^1 et de différentielle partout nulle; soient a,b deux points quelconques de U ouvert convexe; alors l'application $\gamma_{a,b}:t\in[0,1]\longmapsto t\cdot a+(1-t)\cdot b$ est à valeurs dans U. D'après la propriété 15

$$f \circ \gamma_{a,b} : [0,1] \longrightarrow \mathbb{R}$$

$$t \longmapsto f(t \cdot a + (1-t) \cdot b)$$

est dérivable et de dérivée partout nulle. Ainsi :

$$f(a) - f(b) = \int_0^1 \frac{d}{dt} \left(f(t \cdot a + (1 - t) \cdot b) \right) dt = \int_0^1 0 dt = 0 \implies f(b) = f(a)$$

Puisque c'est vrai pour tout $(a,b) \in U^2$, f est constante.

Remarques.

• C'est clairement faux si U n'est qu'ouvert : par exemple la fonction f définie sur $\mathbb{R}^* \times \mathbb{R}$ par f(x,y) = 1si x > 0 et -1 si x < 0 est de classe \mathscr{C}^1 et de différentielle partout nulle.

- \bullet Par contre on peut assouplir l'hypothèse sur U en supposant que U est ouvert et qu'entre deux points de U il existe un arc dérivable dans U qui les relie.
- 2.4. Opérations sur les fonctions de classe \mathscr{C}^1 .

Propriété 17. (Combinaison linéaire d'applications de classe \mathscr{C}^1)

Soient $f, g \in \mathcal{C}^1(U, \mathbb{R})$ et $\lambda \in \mathbb{R}$; alors $\lambda \cdot f + g \in \mathcal{C}^1(U, \mathbb{R})$.

Pour tout $(\lambda, \mu) \in \mathbb{R}^2$ et tout $a \in U$:

$$\forall i \in [[1, n]], \frac{\partial}{\partial x_i} (\lambda \cdot f + \mu \cdot g)(a) = \lambda \cdot \frac{\partial f}{\partial x_i}(a) + \mu \cdot \frac{\partial g}{\partial x_i}(a)$$

$$\nabla (\lambda \cdot f + \mu \cdot g)(a) = \lambda \cdot \nabla f(a) + \mu \cdot \nabla g(a)$$

$$d(\lambda \cdot f + \mu \cdot g)(a) = \lambda \cdot df(a) + \mu \cdot dg(a)$$

Démonstration. Par définition et combinaison linéaire de dérivées scalaires, $\lambda \cdot f + g$ admet des dérivées partielles en tout point de U et $\partial_i(\lambda \cdot f + g) = \lambda \cdot \partial_i f + \partial_i g$. Par combinaison linéaire d'applications continues, toutes les dérivées partielles de $\lambda \cdot f + g$ sont continues.

Propriété 18. (Produit d'applications de classe \mathscr{C}^1)

Si f et g sont deux fonctions de $\mathscr{C}^1(U,\mathbb{R})$, alors leur produit fg est aussi dans $\mathscr{C}^1(U,\mathbb{R})$. Pour tout $a \in U$:

$$\forall i \in [[1, n]], \frac{\partial}{\partial x_i} (f \times g)(a) = \frac{\partial f}{\partial x_i}(a) \times g(a) + f(a) \times \frac{\partial g}{\partial x_i}(a)$$
$$\nabla (f \times g)(a) = g(a) \cdot \nabla f(a) + f(a) \cdot \nabla g(a)$$
$$d(f \times g)(a) = g(a) \cdot df(a) + f(a) \cdot dg(a)$$

 $\textbf{D\'{e}monstration.} \ \ \text{Par d\'{e}finition et d\'{e}rivation de produits de fonctions scalaires}, \ fg \ \text{admet des d\'{e}riv\'{e}es partielles et} :$

$$\partial_i(fg) = \partial_i f \times g + f \times \partial_i g$$

or f et g étant de classe \mathscr{C}^1 , toutes les application $\partial_i f$, $\partial_i g$, f et g sont continues, et donc $\partial_i (fg)$ est continue par somme et produit d'applications continues.

Proposition 19. (Les polynômes sont de classe \mathscr{C}^1)

 $Si\ f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est polynomiale en ses variables, alors f est de classe \mathscr{C}^1 .

Démonstration. Notons x_1, \ldots, x_n les variables; pour tout $i \in [\![1,n]\!]$, la i-ème projection $\pi_i : (x_1, \ldots, x_i, \ldots, x_n) \longmapsto x_i$ admet des dérivées partielles toutes continues. Par produit et combinaison linéaire, toute fonction polynôme est donc de classes \mathscr{C}^1 .

Propriété 20. (Composition à gauche)

Soient $f \in \mathcal{C}^1(U,\mathbb{R})$ et $\varphi : I \longrightarrow \mathbb{R}$ une application de classe \mathcal{C}^1 où I est un intervalle d'intérieur non vide vérifiant $f(U) \subset I \subset \mathbb{R}$. Alors $\varphi \circ f : U \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^1 .

Pour tout $a \in U$:

$$\forall i \in [[1, n]], \quad \frac{\partial}{\partial x_i} (\varphi \circ f)(a) = (\varphi' \circ f(a)) \times \frac{\partial f}{\partial x_i}(a)$$

$$\nabla (\varphi \circ f)(a) = (\varphi' \circ f(a)) \cdot \nabla f(a)$$

$$d(\varphi \circ f)(a) = (\varphi' \circ f(a)) \cdot df(a)$$

Démonstration. On a alors en $a = (a_1, \ldots, a_n) \in U$:

$$g \circ f(a) = g \circ f(a_1, \dots, a_i, \dots, a_n)$$

et pour tout $i \in \llbracket 1, n \rrbracket$:

$$t \longmapsto g \circ f(a_1, \ldots, a_i + t, \ldots, a_n)$$

est dérivable en 0 de dérivée $g' \circ f(a) \times \frac{\partial f}{\partial x_i}(a)$ par dérivation d'une composée de fonctions scalaires; g et f étant de classe \mathscr{C}^1 , $a \longmapsto g' \circ f(a) \times \frac{\partial f}{\partial x_i}(a)$ est continue.

Exercice 4. Sur quel domaine ouvert la fonction suivante est-elle de classe \mathscr{C}^1 ? Calculer ses dérivées partielles :

$$f:(x,y)\longmapsto \ln(x^2+xy+y^2)$$

Résolution.

COROLLAIRE 21. (Inverse)

Si $f \in \mathcal{C}^1(U,\mathbb{R})$ ne s'annule pas sur U, alors $1/f \in \mathcal{C}^1(U,\mathbb{R})$ et :

$$\forall i \in [[1, n]], \ \frac{\partial}{\partial x_i} \left(\frac{1}{f}\right)(a) = -\frac{1}{f(a)^2} \times \frac{\partial f}{\partial x_i}(a)$$
$$\nabla \left(\frac{1}{f}\right)(a) = -\frac{1}{f(a)^2} \cdot \nabla f(a)$$
$$d\left(\frac{1}{f}\right)(a) = -\frac{1}{f(a)^2} \cdot df(a)$$

Démonstration. Découle de la propriété précédente en prenant pour φ la fonction inverse.

Remarque. Notamment, les fonctions rationnelles, c'est à dire quotient de deux polynômes, sont de classe \mathscr{C}^1 partout où elles sont définies.

Le théorème qui suit, appelé règle de la chaîne, est très important. Il généralise la dérivation d'une composée à droite, et permet notamment de lier les dérivées partielles avant et après changement de variables.

Théorème 22. (Règle de dérivation en chaîne)

Soient U un ouvert non vide de \mathbb{R}^n , et V un ouvert non vide de \mathbb{R}^p ; soient deux applications :

On suppose que $u(U) \subset V$, de sorte que $f \circ u : U \longrightarrow \mathbb{R}$ soit définie, que les fonctions $u_1, \ldots, u_p : U \longrightarrow \mathbb{R}$ soient de classe \mathscr{C}^1 et que f soit de classe \mathscr{C}^1 . Alors l'application $f \circ u$:

$$\begin{array}{cccc}
f \circ u : U & \longrightarrow & \mathbb{R} \\
(x_1, \dots, x_n) & \longmapsto & f(u_1(x_1, \dots, x_n), \dots, u_p(x_1, \dots, x_n))
\end{array}$$

est de classe \mathscr{C}^1 , et en notant b = u(a), on a pour tout $i \in [1, n]$:

$$\frac{\partial}{\partial x_i}(f \circ u)(a) = \sum_{k=1}^p \frac{\partial f}{\partial u_k}(b) \times \frac{\partial u_k}{\partial x_i}(a)$$

Démonstration. Soit $a=(a_1,\ldots,a_n)\in U$ et $i\in [\![1,n]\!]$. On considère l'application :

$$\gamma_i: t \longmapsto (u_1(a_1, \dots, t, \dots, a_n), \dots, u_p(a_1, \dots, t, \dots, a_n))$$

Puisque a est un point intérieur de U et u(a) est un point intérieur de V, pour t suffisamment proche de $a_i, (a_1, \ldots, t, \ldots, a_n) \in U$ et $u(a_1, \ldots, t, \ldots, a_n) \in V$. Puisque pour tout $k \in [\![1, p]\!]$, la fonction u_k est de classe \mathscr{C}^1 , il découle par définition que toutes les fonctions $\gamma_{i,k}: t \longmapsto u_k(a_1, \ldots, t, \ldots, a_n)$ sont de classe \mathscr{C}^1 ; autrement dit la fonction γ_i est de classe \mathscr{C}^1 . D'après la propriété 15 la fonction :

$$f \circ \gamma_i : t \longmapsto f((u_1(a_1, \dots, t, \dots, a_n), \dots, u_p(a_1, \dots, t, \dots, a_n))$$

est dérivable en a_i , et sa dérivée, qui par définition vaut, $\partial_i(f \circ u)(a)$ est égale à :

$$(f \circ \gamma_i)'(a_i) = \partial_i (f \circ u)(a) = df(u(a)) \cdot \gamma'(a_i) = \sum_{k=1}^p \partial_k f(u(a)) \times \gamma'_{i,k}(a_i)$$

c'est à dire :

$$\hat{\sigma}_i(f \circ u)(a) = \sum_{k=1}^p \hat{\sigma}_k f(u(a)) \times \hat{\sigma}_i u_k(a_i)$$

soit encore :

$$\frac{\partial}{\partial x_i}(f\circ u)(a) = \sum_{k=1}^p \frac{\partial f}{\partial u_k}(b) \times \frac{\partial u_k}{\partial x_i}(a)$$

De plus les u_k étant toutes continues la fonction u est continue, et puisque f et les u_k sont de classe \mathscr{C}^1 , par somme et produit de fonctions continues :

$$\partial_i(f \circ u) = \sum_{k=1}^p \partial_k f \circ u \times \partial_i u_k$$

est continue. Autrement dit $f \circ u$ est de classe \mathscr{C}^1 .

Remarque. La règle de la chaîne s'écrit de manière concise en omettant les points d'évaluation :

$$\frac{\partial}{\partial x_i}(f \circ u) = \sum_{k=1}^p \frac{\partial f}{\partial u_k} \times \frac{\partial u_k}{\partial x_i}$$

Il est facile de s'en rappeler, d'autant plus si on représente les dérivées partielles sous la forme matricielle jacobienne, la formule est alors celle d'un produit matriciel:

(mais en omettant encore les points d'évaluation, la vraie formule avec les matrices jacobiennes est

$$J(f \circ u)(a) = J(f)(u(a)) \times J(u)(a)$$

qui généralise aux fonctions de plusieurs variables la formule de dérivation d'une composée). Mais attention aux points d'évaluation :

$$\frac{\partial}{\partial x_i}(f \circ u)(a) = \sum_{k=1}^p \frac{\partial f}{\partial u_k}(u(a)) \times \frac{\partial u_k}{\partial x_i}(a)$$

Exemples.

• Considérons les deux fonctions :

où U, V sont des ouverts de \mathbb{R}^2 , $f \in \mathscr{C}^1(V, \mathbb{R})$, $g \in \mathscr{C}^1(U, \mathbb{R})$ et $g(U) \subset V$.

Soit $a=(x,y)\in U$; $f\circ g$ est dérivable en a, et la règle de la chaîne donne :

$$\frac{\partial f \circ g}{\partial x}(x,y) = \frac{\partial f}{\partial u}(u(x,y),v(x,y)) \times \frac{\partial u}{\partial x}(x,y) + \frac{\partial f}{\partial v}(u(x,y),v(x,y)) \times \frac{\partial v}{\partial x}(x,y)$$
$$\frac{\partial f \circ g}{\partial v}(x,y) = \frac{\partial f}{\partial u}(u(x,y),v(x,y)) \times \frac{\partial u}{\partial v}(x,y) + \frac{\partial f}{\partial v}(u(x,y),v(x,y)) \times \frac{\partial v}{\partial v}(x,y)$$

ce qui s'écrit plus simplement en omettant les points d'évaluation

$$\frac{\partial f \circ g}{\partial x} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial x}$$

$$\frac{\partial f \circ g}{\partial y} = \frac{\partial f}{\partial u} \times \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \times \frac{\partial v}{\partial y}$$

• Soient $(a, b, c, d) \in \mathbb{R}^4$, $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 et :

$$h(x,y) = f(ax + by, cx + dy)$$

h est de classe \mathscr{C}^1 sur \mathbb{R}^2 puisque les deux fonctions $(x,y) \longmapsto ax + by$ et $(x,y) \longmapsto cx + dy$ sont polynomiales et donc \mathscr{C}^1 . D'après la règle de la chaîne :

$$\frac{\partial h}{\partial x}(x,y) = a \times \frac{\partial f}{\partial x}(ax + by, cx + dy) + c \times \frac{\partial f}{\partial y}(ax + by, cx + dy)$$

$$\frac{\partial h}{\partial y}(x,y) = b \times \frac{\partial f}{\partial x}(ax + by, cx + dy) + d \times \frac{\partial f}{\partial y}(ax + by, cx + dy)$$

soit en omettant les points d'évaluation

$$\frac{\partial h}{\partial x} = a \times \frac{\partial f}{\partial x} + c \times \frac{\partial f}{\partial y} \qquad \frac{\partial h}{\partial y} = b \times \frac{\partial f}{\partial x} + d \times \frac{\partial f}{\partial y}$$

• Exemple à connaitre : coordonnées polaires.

Soit $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^1 et $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par :

$$g(r,\theta) = f(r\cos\theta, r\sin\theta)$$

Puisque $(r, \theta) \longmapsto r \cos \theta$ et $(r, \theta) \longmapsto r \cos \theta$ sont de classe \mathscr{C}^1 , g est de classe \mathscr{C}^1 et :

$$\frac{\partial g}{\partial r} = \cos \theta \frac{\partial f}{\partial x}(x, y) + \sin \theta \frac{\partial f}{\partial y}(x, y) \qquad \qquad \frac{\partial g}{\partial \theta} = -r \sin \theta \frac{\partial f}{\partial x}(x, y) + r \cos \theta \frac{\partial f}{\partial y}(x, y)$$

avec $x = r \cos \theta$ et $y = r \sin \theta$.

Exercice 5. Déterminer les fonctions $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 vérifiant :

$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 1$$

 $\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}=1$ On pourra effectuer le changement de variables u=x-y et v=x+y.

Résolution.				

2.5. Dérivées partielles secondes et fonctions de classe \mathscr{C}^2 .

Dans toute cette partie U désigne un ouvert non vide de \mathbb{R}^n et f une application de U dans \mathbb{R} .

Les dérivées partielles de $f:U\subset\mathbb{R}^n\to\mathbb{R}$, lorsqu'elles existent sont elles-mêmes des applications de U dans \mathbb{R} ; à ce titre elles peuvent donc admettre des dérivées partielles; ce sont les dérivées partielles secondes de f.

DÉFINITION 8. (Dérivées partielles secondes)

Soit U un ouvert non vide de \mathbb{R}^n et $f: U \longrightarrow \mathbb{R}$ une application admettant des dérivées partielles, $\partial_j f$ pour tout $j \in [1, n]$. Pour tout $(i, j) \in [1, n]^2$, lorsqu'elle existe, la fonction $\partial_i (\partial_j f)$ est appelée dérivée partielle selon (i, j); on parle alors d'une dérivée partielle d'ordre 2 de f, que l'on note:

 $\partial_{i,j}^2 f$ ou $\frac{\partial^2 f}{\partial x_i \partial x_j}$ ou lorsque i = j: $\partial_{i,i}^2 f$ ou $\frac{\partial^2 f}{\partial x_i^2}$

Exemple. Lorsque f et constante, elle est admet des dérivées partielles d'ordre 1 toutes nulles, et donc des dérivées partielles d'ordre 2 nulles aussi.

Définition 9. (Fonctions de classe \mathscr{C}^2)

Avec les mêmes notations; lorsque $f: U \longrightarrow \mathbb{R}$ admet des dérivées secondes selon (i,j) pour tout $(i,j) \in [\![1,n]\!]^2$ et qu'elles sont toutes continues sur U, on dit que f est de classe \mathscr{C}^2 . On note $\mathscr{C}^2(U,\mathbb{R})$ l'ensemble des applications de U dans \mathbb{R} de classe \mathscr{C}^2 .

Remarque. Par définition f est de classe \mathscr{C}^2 si et seulement si elle admet des dérivées partielles toutes de classe \mathscr{C}^1 .

Propriété 23. ($\mathscr{C}^2 \Longrightarrow \mathscr{C}^1$)

 $Si\ f: U \longrightarrow \mathbb{R}\ est\ de\ classe\ \mathscr{C}^2\ alors\ f\ est\ de\ classe\ \mathscr{C}^1.$

Démonstration. Par définition si f est de classe \mathscr{C}^2 alors toutes se dérivées d'ordre 1 sont de classe \mathscr{C}^1 , et en particulier (corollaire 14) elles sont continues; ainsi f est de classe \mathscr{C}^1 .

Remarque. Dit différemment, et avec le corollaire 14 :

$$\mathscr{C}^2(U,\mathbb{R}) \subset \mathscr{C}^1(U,\mathbb{R}) \subset \mathscr{C}^0(U,\mathbb{R}).$$

Puisqu'une dérivée partielle d'ordre $2 \partial_{i,j}^2 f$ est elle même une dérivée partielle d'ordre $1 \partial_{i,j}^2 f = \partial_i \partial_j f$, et puisque lorsque f est de classe \mathscr{C}^2 toutes ses dérivées partielles d'ordre 1 sont de classe \mathscr{C}^1 , toutes les opérations sur les dérivées partielles se transposent aux dérivées partielles secondes. On obtient :

Propriété 24. (Combinaison linéaire d'applications de classe \mathscr{C}^2)

Soient $f, g \in \mathcal{C}^2(U, \mathbb{R})$ et $\lambda \in \mathbb{R}$; alors $\lambda \cdot f + g \in \mathcal{C}^2(U, \mathbb{R})$.

Pour tout $(\lambda, \mu) \in \mathbb{R}^2$ et tout $a \in U$:

$$\forall (i,j) \in [[1,n]]^2, \ \frac{\partial^2}{\partial x_i \partial x_j} (\lambda \cdot f + \mu \cdot g)(a) = \lambda \cdot \frac{\partial f^2}{\partial x_i \partial x_j} (a) + \mu \cdot \frac{\partial^2 g}{\partial x_i \partial x_i} (a)$$

Démonstration. Découle immédiatement de la propriété analogue à l'ordre 1 (propriété 17).

Propriété 25. (Produit d'applications de classe \mathscr{C}^2)

Si f et g sont deux fonctions de $\mathscr{C}^2(U,\mathbb{R})$, alors leur produit fg est aussi dans $\mathscr{C}^2(U,\mathbb{R})$. Pour tout $a \in U$:

$$\forall (i,j) \in [[1,n]]^2, \quad \frac{\partial^2}{\partial x_i \partial x_j} (f \times g)(a) = \frac{\partial^2 f}{\partial x_i \partial x_j} (a) \times g(a) + \frac{\partial f}{\partial x_j} (a) \times \frac{\partial g}{\partial x_i} (a) + f(a) \times \frac{\partial^2 g}{\partial x_i \partial x_j} (a) + \frac{\partial f}{\partial x_i} (a) \times \frac{\partial g}{\partial x_j} (a)$$

Démonstration. Découle de la propriété analogue sur les dérivées d'ordre 1 (propriété 18). Jean-Philippe Préaux

Proposition 26. (Les polynômes sont de classe \mathscr{C}^2)

Si $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ est polynomiale en ses variables, alors f est de classe \mathscr{C}^2 .

Démonstration. Notons x_1, \ldots, x_n les variables; pour tout $i \in [\![1, n]\!]$, la i-ème projection $\pi_i : (x_1, \ldots, x_i, \ldots, x_n) \longmapsto x_i$ admet des dérivées partielles secondes toutes continues. Par produit et combinaison linéaire, toute fonction polynôme est donc de classe \mathscr{C}^2 .

Propriété 27. (Composition à gauche)

Soient $f \in \mathcal{C}^2(U, \mathbb{R})$ et $\varphi : I \longrightarrow \mathbb{R}$ une application de classe \mathcal{C}^2 où I est un intervalle d'intérieur non vide vérifiant $f(U) \subset I \subset \mathbb{R}$. Alors $\varphi \circ f : U \longrightarrow \mathbb{R}$ est de classe \mathcal{C}^2 .

Démonstration. Découle de la propriété analogue à l'ordre 1 (propriété 27 ainsi que des propriétés 18 et 23.

COROLLAIRE 28. (Inverse)

Si $f \in \mathscr{C}^2(U, \mathbb{R})$ ne s'annule pas sur U, alors $1/f \in \mathscr{C}^2(U, \mathbb{R})$.

Démonstration. Découle de la propriété précédente en prenant pour φ la fonction inverse.

Remarque. Notamment, les fonctions rationnelles, c'est à dire quotient de deux polynômes, sont de classe \mathscr{C}^2 partout où elles sont définies.

Le théorème de Schwarz est un résultat essentiel qui énonce que pour les applications de classes \mathscr{C}^2 , l'ordre de dérivation des dérivées partielles secondes n'importe pas.

THÉORÈME 29. (De Schwarz)

Soit $f: U \longrightarrow \mathbb{R}$ une application de classe \mathscr{C}^2 . Alors:

$$\forall (i,j) \in [[1,n]]^2, \ \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

Démonstration. Admis.

DÉFINITION 10. (Matrice Hessienne)

Si f admet des dérivées partielles d'ordre 2 en $a \in U$, on appelle <u>matrice Hessienne</u> de f en a, la matrice de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients sont $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{(i,j) \in [\![1,n]\!]^2}$:

$$H_f(a) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_j}(a) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_i \partial x_1}(a) & \cdots & \frac{\partial^2 f}{\partial x_i \partial x_j}(a) & \cdots & \frac{\partial^2 f}{\partial x_i \partial x_n}(a) \\ \vdots & & \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(a) & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_j}(a) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{pmatrix}$$

Remarque. Lorsque f est de classe \mathscr{C}^2 , d'après le théorème de Schwarz la matrice hessienne $H_f(a)$ est en tout point a symétrique réelle, et donc d'après le théorème spectral, elle est diagonalisable dans $\mathscr{M}_n(\mathbb{R})$.

2.6. Formule de Taylor d'ordre 2 et recherche d'extremum.

Soient $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ et $M \in \mathcal{M}_n(\mathbb{R})$:

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \qquad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad M = \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix}$$

Alors:

$$(X,Y) \longmapsto X^{\mathsf{T}}Y = (x_1 \cdots x_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i = \langle X \mid Y \rangle$$

est le produit scalaire usuel et :

$$(X,Y) \longmapsto X^{\mathsf{T}} M Y = (\begin{array}{ccc} x_1 & \cdots & x_n \end{array}) \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i=1}^n \sum_{j=1}^n x_i a_{i,j} y_j$$

est une forme bilinéaire. Lorsque M est symétrique :

$$X^{\mathsf{T}}MY = (X^TMY)^T = Y^{\mathsf{T}}M^{\mathsf{T}}X = Y^{\mathsf{T}}MX$$

la forme bilinéaire est symétrique.

THÉORÈME 30. (Formule de Taylor à l'ordre 2)

Soit $f \in \mathscr{C}^2(U,\mathbb{R})$ et $a \in U$. Alors f admet en a le développement de Taylor d'ordre 2: pour tout $h = (h_1, \ldots, h_n) \in \mathbb{R}^n$ suffisamment proche de $0_{\mathbb{R}^n}$:

$$f(a+h) - f(a) = \underset{h \to 0_{\mathbb{R}^n}}{=} df(a) \cdot (h_1, \dots, h_n) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n h_i \times \frac{\partial^2 f}{\partial x_i \partial x_j}(a) \times h_j + o(\|h\|^2)$$

$$o\dot{u}\ o(\|h\|^2) = \|h^2\| \times \varepsilon(h)\ avec\ h: U \longrightarrow \mathbb{R}\ et \lim_{h \to 0_{\mathbb{R}^n}} \varepsilon(h) = 0.$$

En identifiant les vecteur h et $\nabla f(a)$ avec leur matrice des coordonnées dans la base canonique, le développement de Taylor d'ordre 2 s'écrit de manière plus concise :

$$f(a+h) = \int_{h\to 0_{\mathbb{R}^n}} f(a) + \nabla f(a)^{\mathsf{T}} h + \frac{1}{2} h^{\mathsf{T}} H_f(a) h + o(\|h\|^2)$$

Démonstration. Admis.

Exemple. Lorsque n=2:

$$f(a+h,b+k) = f(a,b) + h \times \frac{\partial f}{\partial x}(a,b) + k \times \frac{\partial f}{\partial y}(a,b) + k \times \frac{\partial f}{\partial y}(a,b) + \frac{h^2}{2} \times \frac{\partial^2 f}{\partial x^2}(a,b) + \frac{hk}{2} \times \frac{\partial^2 f}{\partial x \partial y}(a,b) + \frac{kh}{2} \times \frac{\partial^2 f}{\partial y \partial x}(a,b) + \frac{k^2}{2} \times \frac{\partial^2 f}{\partial y^2}(a,b) + o(h^2 + k^2)$$

et f étant de classe \mathscr{C}^2 , avec le théorème de Schwarz :

$$f(a+h,b+k) = f(a,b) + h \times \frac{\partial f}{\partial x}(a,b) + k \times \frac{\partial f}{\partial y}(a,b) + \frac{h^2}{2} \times \frac{\partial^2 f}{\partial x^2}(a,b) + hk \times \frac{\partial^2 f}{\partial x \partial y}(a,b) + \frac{k^2}{2} \times \frac{\partial^2 f}{\partial y^2}(a,b) + o(h^2 + k^2)$$

qui s'écrit aussi :

$$f(a+h,b+k) = f(a,b) + \begin{pmatrix} \frac{\partial f}{\partial x}(a,b) & \frac{\partial f}{\partial y}(a,b) \end{pmatrix} \times \begin{pmatrix} h \\ k \end{pmatrix} + \frac{1}{2} \begin{pmatrix} h & k \end{pmatrix} \times \begin{pmatrix} \frac{\partial^2 f}{\partial x^2}(a,b) & \frac{\partial^2 f}{\partial x \partial y}(a,b) \\ \frac{\partial^2 f}{\partial y \partial x}(a,b) & \frac{\partial^2 f}{\partial y^2}(a,b) \end{pmatrix} \times \begin{pmatrix} h \\ k \end{pmatrix} + o(h^2 + k^2)$$

Exercice 6. Donner le développement de Taylor d'ordre 2 au voisinage de (a,b) de :

$$f:(x,y)\longmapsto\sin(xy)$$

Résolution.

La formule de Taylor au second ordre s'avère très utile pour déterminer les extremums locaux de f.

Définition 11. (Extremum local/global)

Soit $f: U \longrightarrow \mathbb{R}$; un point $a \in U$ est un:

- extremum (global) de f si:
 - Pour tout $x \in U$, $f(x) \ge f(a)$; dans ce cas a est un minimum (global), ou
 - Pour tout $x \in U$, $f(x) \leq f(a)$; dans ce cas a est un maximum (global).
- extremum local de f si il existe une boule ouverte B(a,r) centrée en a tel que :
 - Pour tout $x \in U \cap B(a,r)$, $f(x) \ge f(a)$; dans ce cas a est un minimum local, ou
 - Pour tout $x \in U \cap B(a,r)$, $f(x) \leq f(a)$; dans ce cas a est un maximum local.

Remarque. Bien sur tout extremum global est aussi un extremum local. La réciproque est fausse; par exemple $x \mapsto x + \cos(x)$ admet un extremum local en tout point $x \equiv \frac{\pi}{2}[\pi]$ et aucun extremum global.

Théorème 31. (Un extremum est un point critique)

Si $f \in \mathcal{C}^1(U,\mathbb{R})$ admet un extremum en a, alors en a toutes les dérivées partielles d'ordre 1 s'annulent :

$$a \ extremum \ local \implies \nabla f(a) = 0$$

Un tel point a où les dérivées partielles d'ordre 1 s'annulent s'appelle un point critique.

Remarque. Pour plus de lisibilité on note $0 = 0_{\mathbb{R}^n}$.

Démonstration. Puisque U est un ouvert, il existe r > 0 tel que $B(a, r) \subset U$. Soit (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n ; si a est un extremum local alors toutes les fonctions de la variable réelle :

$$\varphi_i: t \longmapsto f(a+t \cdot e_i)$$

admettent un extremum local en 0. Or les applications φ_i sont définies sur l'intervalle ouvert]-r,r[contenant 0 et dérivables en 0, de dérivée $\varphi_i'(0)=\partial_i(a)$; or une application de la variable réelle définie sur un intervalle ouvert et admettant un extremum local en un point où elle est dérivable, a une dérivée qui s'annule en ce point. Ainsi :

$$\forall i \in [[1, n]], \ \varphi_i'(0) = \frac{\partial f}{\partial x_i}(a) = 0$$

C'est une condition nécessaire non suffisante (par exemple 0 est un point critique de $x \mapsto x^3$ mais n'est pas un extremum local).

Une propriété très intéressante pour s'assurer de l'existence d'un minimum local est la suivante :

Exercice 7.

1) Soit : $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une application continue; montrer que si :

$$\lim_{\|x\| \to +\infty} f(x) = +\infty \qquad \text{(on dit que } f \text{ est coercive)}$$

alors f admet un minimum global.

2) Montrer que:

$$f(x,y) = \frac{e^{2(x^2+y^2)}}{1+(x+y)^2}$$

admet un minimum global et le déterminer.

Résolution.				

On peut raffiner le résultat à l'ordre 2 en une condition nécessaire plus fine, ainsi qu'en une condition suffisante.

Rappelons qu'une matrice symétrique réelle $M \in \mathcal{M}_n(\mathbb{R})$ est dite :

- positive si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\mathsf{T}}MX \geq 0$; c'est le cas précisément lorsque toutes les valeurs propres de M sont positives. On note $\mathcal{S}_n^+(\mathbb{R})$ l'ensemble des matrices symétriques réelles positives.
- définie positive si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{O_{n,1}\}, X^{\mathsf{T}}MX > 0$; c'est le cas précisément lorsque toutes les valeurs propres de M sont strictement positives. On note $\mathscr{S}_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques réelles définies positives.

Notons encore qu'une matrice symétrique réelle $M \in \mathcal{M}_n(\mathbb{R})$:

- négative si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), X^{\mathsf{T}}MX \leq 0$; c'est le cas précisément lorsque toutes les valeurs propres de M sont négatives. On note $\mathscr{S}_n^-(\mathbb{R})$ l'ensemble des matrices symétriques réelles négatives.
- définie négative si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{O_{n,1}\}, X^{\mathsf{T}}MX < 0$; c'est le cas précisément lorsque toutes les valeurs propres de M sont strictement négatives. On note $\mathscr{S}_n^{--}(\mathbb{R})$ l'ensemble des matrices symétriques réelles définies négatives.

Théorème 32. (Condition nécessaire/suffisante en un extremum local) Soit $f \in \mathcal{C}^2(U, \mathbb{R})$ et $a \in U$.

- (Condition nécessaire pour que a soit un extremum local) Si a est un minimum (resp. maximum) local alors $\nabla f(a) = 0$ et $H_f(a)$ est positive (resp. négative).
- (Condition suffisante pour que a soit un extremum local) $Si \nabla f(a) = 0$ et $H_f(a)$ est définie positive (resp. définie négative) alors a est un minimum (resp. maximum) local.

Démonstration. Si a est un extremum local, alors a est un point critique $\nabla f(a) = 0$, et le développement de Taylor à l'ordre a devient :

$$f(a+h) - f(a) = \frac{1}{2}h^{\mathsf{T}}H_f(a)h + o(\|h\|^2)$$

Par définition il existe $r_1>0$ tel que pour tout $h\in U\cap B(a,r_1), \ f(a+h)-f(a)$ garde un signe constant; $\geqslant 0$ en un minimum, $\leqslant 0$ en un maximum. Puisque U est un ouvert, a est un point intérieur et donc il existe $r_2>0$ tel que $B(a,r_2)\subset U$. Ainsi, en posant $r=\min(r_1,r_2)>0,\ B(a,r)\subset U$ et pour tout $h\in B(a,r),\ f(a+h)-f(a)$ est défini et de signe constant. Fixons une direction $d\in \mathbb{R}^n\setminus \{0_{\mathbb{R}^n}\}$ et appliquons le développement de Taylor pour $h=t\cdot d$ pour t un réel proche de 0:

$$f(a+t\cdot d)-f(a)=t^2\left(rac{1}{2}d^\mathsf{T}H_f(a)d+\left\|d
ight\|^2 imes arepsilon(t)
ight)$$

avec $\varepsilon(t) \xrightarrow[t \to 0]{} 0$. Le fait que a soit un minimum (resp. maximum) local nous assure alors que le membre de gauche est $\geqslant 0$ (resp. $\leqslant 0$) pour tout t vérifiant $|t| < \frac{r}{\|d\|}$. Ainsi :

$$0<|t|<\frac{r}{\|d\|}\implies\frac{1}{2}d^{\mathsf{T}}H_{f}(a)d+\|d\|^{2}\times\varepsilon(t)\text{ garde le même signe constant }(\geqslant0\text{ en un min},\leqslant0\text{ en un max})$$

et donc par passage à la limite lorsque $t \to 0$:

$$\boldsymbol{d}^\mathsf{T} H_f(\boldsymbol{a}) \boldsymbol{d}$$
est de même signe ($\geqslant 0$ en un min, $\leqslant 0$ en un max)

Puisque c'est vrai pour tout vecteur $d \in \mathbb{R}^n$ non nul, et trivialement aussi pour $d = 0_{\mathbb{R}^n}$, on en déduit que $H_f(a)$ est positive en a minimum local et négative en a maximum local.

Si $\nabla f(a) = 0$ et $H_f(a)$ est définie positive. L'application $d \longmapsto d^\mathsf{T} H_f(a) d$ est une forme bilinéaire entre \mathbb{R} -ev de dimensions finies, elle est donc continue. D'après le théorème des bornes atteintes (cf. Chapitre "Espaces vectoriels normés"), sur le fermé borné $S(0_{\mathbb{R}n},1)$ elle est bornée et atteint ses bornes. Ainsi il existe m>0 tel que pour tout $d\in\mathbb{R}^n$, $\|d\|=1\implies d^\mathsf{T} H_f(a) d\geqslant m>0$. Soit $h\in\mathbb{R}^n\setminus\{0_{\mathbb{R}^n}\}$; notons $d_h=\frac{1}{\|h\|}\cdot h\in S(0_{\mathbb{R}_n},1)$; ainsi $h=\|h\|\cdot d_h$. Alors si h est suffisamment proche de $0_{\mathbb{R}^n}$:

$$\begin{split} f(a+h) - f(a) &= \frac{1}{2} h^\mathsf{T} H_f(a) h + o(\|h\|^2) \\ &= \|h\|^2 \Big(\frac{1}{2} \underbrace{d_h^\mathsf{T} H_f(a) d_h}_{\geqslant m > 0} + \varepsilon(h) \Big) \quad \text{avec } \varepsilon(h) \underset{h \to 0_{\mathbb{R}^n}}{\longrightarrow} 0 \end{split}$$

Puisque $\varepsilon(h) \xrightarrow[h \to 0_{\mathbb{R}^n}]{} 0$, par définition :

$$\exists r>0, \forall h \in \mathbb{R}^n, \|h\| \leqslant r \implies |\varepsilon(h)| \leqslant \frac{m}{4}$$

et donc pour ce r > 0 :

$$a+h \in U$$
 et $||h|| \leqslant r \implies f(a+h) - f(a) \geqslant \frac{m||h||^2}{4} > 0$

Ainsi il existe bien une boule centrée en $a,\,B(a,r),$ tel que $\forall x\in U\cap B(a,r)$:

$$f(x) \geqslant f(a)$$

(il suffit de poser x = a + h). Donc a et bien un minimum local.

Le cas où $\nabla f(a) = 0$ et $H_f(a)$ est définie négative, est similaire : en changeant : $\|d\| = 1 \implies d^\mathsf{T} H_f(a) d \leqslant m < 0$ on obtient :

$$a + h \in U \text{ et } ||h|| \le r \implies f(a + h) - f(a) \le \frac{m||h||^2}{4} < 0$$

et a est un maximum local.

Méthode. Il s'agit en un point critique a d'une fonction f de classe \mathscr{C}^2 :

- d'une condition nécessaire pour que a soit un extremum : $H_f(a) \in \mathscr{S}_n^+(\mathbb{R}) \cup \mathscr{S}_n^-(\mathbb{R})$, ainsi si $H_f(a) \notin \mathscr{S}_n^+(\mathbb{R}) \cup \mathscr{S}_n^-(\mathbb{R})$ alors a n'est pas un extremum local,
- d'une condition suffisante pour que a soit un extremum : $H_f(a) \in \mathscr{S}_n^{++}(\mathbb{R}) \cup \mathscr{S}_n^{--}(\mathbb{R})$, ainsi si $H_f(a) \in \mathscr{S}_n^{++}(\mathbb{R}) \cup \mathscr{S}_n^{--}(\mathbb{R})$ alors a est un extremum local.

Mais ce n'est pas une condition nécessaire et suffisante : si en a point critique, $H_f(a) \in \mathscr{S}_n^+(\mathbb{R}) \cup \mathscr{S}_n^-(\mathbb{R})$, on ne peut rien conclure ; c'est le cas d'indétermination.

Dans le cas particulier d'une fonction de classe \mathscr{C}^2 de $U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$, le théorème devient : Jean-Philippe Préaux 23

COROLLAIRE 33. (Cas particulier des fonctions de deux variables réelles)

Soit $f: U \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^2 et soit a un point critique de f (i.e. $\nabla f(a) = 0$); Notons la matrice Hessienne de f en a:

$$H = H_f(a) = \begin{pmatrix} r & s \\ s & t \end{pmatrix} \in \mathscr{S}_2(\mathbb{R}) \subset \mathscr{M}_2(\mathbb{R})$$

Alors:

- Si a est un extremum local, alors $det(H) = rt s^2 \ge 0$, et:
 - $si\ a\ est\ un\ minimum\ local,\ alors\ tr(H) = r + t \geqslant 0,$
 - $si\ a\ est\ un\ maximum\ local,\ alors\ tr(H)=r+t\leqslant 0.$
- $Si \det(H) = rt s^2 > 0$, alors a est un extremum local, et:
 - $si \operatorname{tr}(H) = r + t > 0$, alors a est un minimum local,
 - $si \operatorname{tr}(H) = r + t < 0$, alors a est un maximum local.

Remarque. Les notations r, s, t sont appelées les notations de Monge.

 $\textbf{D\'{e}monstration.} \ \ \text{Puisque la matrice Hessienne} \ \ H \ \text{est (d'après le th\'{e}or\`eme de Schwarz) sym\'{e}trique r\'{e}elle, elle est d'après le th\'{e}or\`eme spectral diagonalisable et donc :$

- (resp. définie) positive ssi ses valeurs propres sont (resp. strictement) positives,
- (resp. définie) négative ssi ses valeurs propres sont (resp. strictement) négatives.

Mais le déterminant de H est le produit des valeurs propres, et sa trace est la somme des valeurs propres. Puisque $H \in \mathcal{M}_2(\mathbb{R})$, les valeurs propres sont de même signe ssi $\det(H) \ge 0$ et de plus non nulles ssi $\det(H) > 0$, et leur signe est alors celui de $\operatorname{tr}(H)$. Le résultat découle alors du théorème précédent.

Exercice 8.

1) Déterminer tous les extremums locaux de :

$$f(x,y) = x^2 + xy + y^2 + \frac{x^3}{4}$$

2) Même question avec :

$$g(x,y) = x^4 + y^4 - 2(x-y)^2$$

Résolution.

PC	CALCUL DIFFÉRENTIEL	ENCPB

Jean-Philippe Préaux